Description RCM simulations in CLARIS LPB

Model

Short model name	RegCM3	
Full model name	Regional Climate Model	
Institute	GrEC-USP, Departamento de Ciências Atmosféricas,	
	Unversidade de São Paulo, Brazil	
	(http://www.grec.iag.usp.br/)	
Model version	3	
Contact person name	Rosmeri Porfírio da Rocha	
Contact person email	rosmerir@model.iag.usp.br	
General references	Pal et al. (2007), BAMS, 88, 1395–1409.	
	da Rocha et al. (2009), JGR , 114, p. D10108,	
	doi:10.1029/2008JD010212	

Experimental setup

Name of domain	South America
Size of full grid (lon x lat x vertical)	192 x 202 x 18
Horizontal resolution	50 x 50 km
Type of grid	Rotated Mercator
Lateral Boundary Relaxation number of grid points	12
Nudging (if yes, provide some description spectral,	No
variables, levels)	
Boundary zone excluded (grid points)	0
Size of post-processed output grid (lon x lat)	192 x 202

ERA-INTERIM

Time period	1989-2008
Source of boundary condition	ERA-Interim
Initial condition	ERA-Interim
Spin up period	Jan-Dec 1989
Internal reference of simulation	

A1B GCM

Time period	1959-1990, 2009-2040, 2069-2100
Source of boundary condition	HadCM3-Q0
Initial condition	HadCM3-Q0
Spin up period	Jan-Dec 1959, Jan-Dec 2009, Jan-Dec 2069
	OBS: We sent the spin up periods to the
	CLARIS Data Base
Internal reference of simulation	

General model description

Process:	Description:	Reference:
Dynamics	Split-explicit integration scheme	Giorgi et al. (1993)
Radiation	Short and longwave radiation	Kiehl et al. (1996)
	processes follows the	
	Community Climate Model 3 (CCM3)	
Cloud fraction	Obtained from explicit cloud scheme	Pal et al. (2000)
	and from convective scheme	
Turbulence	is based on a nonlocal diffusion	Holtslag (1990)
	concept that takes into account	
	countergradient fluxes resulting from	
	large-scale eddies in an unstable,	
	well-mixed atmosphere	
Explicit cloud	grid-scale precipitation scheme	Pal et al. (2000)
and	solves only the prognostic equation	
precipitation	for	
	cloud water, which is then directly	
	used in the radiative transfer	
	evaluations.	
Convection	Grell scheme that considers a single	Grell (1993)
	cloud	
	represented by undiluted updraft and	
	downdraft currents	
Land-surface	BATS (Biosphere- Atmosphere	Dickinson et al. (1993)
scheme	Transfer Scheme) surface-vegetation-	
	atmosphere transfer scheme	
Fluxes over	roughness length is function of the	Zeng et al. (1998)
sea	wind velocity to account for	
	additional flux induced by boundary	
	layer scale variability.	

Details in model description (use or modify as needed)

Land-surface processes

Specification:	Description:	Reference:
Land cover map	Global Land Cover	Loveland et al. (2000).
	Characterization (GLCC)	
	datasets for the	
	vegetation/landuse data	
Soil map	Is specified according to	
	the land cover map	
Orography data	GTOPO30	
No of sub surfaces (tiles)	3	

Overview of tiles:	vegetation layer, a snow layer, a surface soil layer	
Interactive vegetation	No	
Interactive vegetation		
Soil layers for	3 layers: 10 cm thick, or	
temperature	root zone layer, 1-3 m	
	thick, and a third deep soil	
	layer 4.5 m thick (depends	
	of the vegetation)	
Soil layers for humidity	3 layers: 10 cm thick, or	
	root zone layer, 1-3 m	
	thick, and a third deep soil	
	layer 4.5 m thick (depends	
	of the vegetation)	

References

- da Rocha, RP, CA Morales, SV Cuadra, T Ambrizzi (2009) Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations. Journal of Geophysical Research, 114:1-19. doi:10.1029/2008JD010212
- Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. Tech. Rep. TN-387/STR, NCAR, Boulder, pp 72
- Giorgi F., M. R. Marinucci, and G. T. Bates (1993) Development of a secondgeneration regional climate model (RegCM2). part I: Boundarylayer and radiative transfer processes, Mon. Weather Rev., 121, 2749–2813.
- Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787.

- Holtslag, AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather and forecasting. Mon Weather Rev 118:1561–1575
- Kiehl, JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3), Tech. Rep. TN-420/STR, NCAR,Boulder, 152 pp
- Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu J, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCOVER from 1-km AVHRR Data. Int J Remote Sens 21:1303–1330
- Pal JS, Small EE, Elthair EA (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594.
- Pal JS et al (2007) The ITCP RegCM3 and RegCNET: Regional Climate Modeling for the Developing World. Bull Am Meteorol Soc 88(9):1395–1409
- Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO Data. J Clim 11:2628–2644