

Fotos: Manuel Roca

Efforts and challenges of climate modeling in Bolivia

Marcos Andrade

CORDEX 2018, La Paz, Bolivia

Laboratorio de Física de la Atmósfera Instituto de Investigaciones Físicas Universidad Mayor de San Andrés

Introduction

- Bolivia has an extended territory: 1 098 581 km²
- Only ~11 million of inhabitants (5 living in the three main cities)
- Complex topography with large altitudinal gradients: Andes to lowlands
- Tropical physics and dynamics

Introduction (cont.)

- In addition, little information for validating the model outputs
- Few ground stations measuring meteorological variables (mainly temperature and precipitation)
- Several of them with problems (quality and completeness)
- Re-analyses also with problems
- As well as satellite products

Ground observations in Bolivia

⁽Hunziker et al., 2017)

Ground observations in Bolivia

- ✓ Problems with instruments
- ✓ No transcription of original books
- ✓ Data discarded due to quality control
- ✓ Observation errors
- Some stations do not collect data all the time

Model and runs

- Thanks to efforts of the Bolivian government, through the PPCR project, WRF has been used for climate modeling at a ~3-4 km of horizontal resolution
- Mainly PCP, TN and TX have been used for the analysis

	University of Utah	University of Nebraska, Lincoln		
Model	WRF	WRF		
Present	1991-2010	1979-2012		
Forcing	NCEP-CFSR	NNRP R1		
Resolution	38 km	2.5°		
Future	2041-2060	2056-2080		
Scenario	RCP8.5	RCP2.6, RCP4.5, RCP8.5		
Forcing GCM	CSIRO	CCSM4		
	MPI	MPI		
	GFDL	MIROC		
	MMM (Ensemble)			

World Bank

Inter-American Development Bank Bob Ogblesby & Clint Rowe

University of Nebraska

Domains and resolution

Verification

Minimum temperature

Nebraska

Precipitation

Obs - Mod

Utah

PCP: Different locations

Precipitation

Utah

Obs - Mod

Conclusions of verification

- Poor work for temperature (TN y TX) for <u>both</u> runs
 - Maybe the time that represents TN & TX produces in part the difference?
 - Quality of data (bad data) used for verification?
- Nebraska: Strong overestimation of PCP
- Utah: Better behavior of PCP although strangely underestimates PCP in the lowlands

Future: Temperature

- Both runs show a clear increment of temperature (TN & TX) over Bolivia (2.5-3.0°C)
- This change is statistically significant for the whole country
- Even though the mean increment is similar for both runs, the spatial distribution between them is different

Changes in PCP

20.

60.

80

100.

40.

-72.2 -70.9 -69.5 -68.1 -66.8 -65.4 -64.0 -62.6 -61.3 -59.9 -58.5 -57.2 -55.8

(mm/mes)

-72.2 -70.9 -69.5 -68.1 -66.8 -65.4 -64.0 -62.6 -61.3 -59.9 -58.5 -57.2 -55.8

-100

-80. -60.

-40, -20, 0

MPI

Changes in PCP

-100

-80 -60 -40 -20 20.

40. 60. 80. 100.

-72.2 -70.9 -69.5 -68.1 -66.8 -65.4 -64.0 -62.6 -61.3 -59.9 -58.5 -57.2 -55.8

(mm/mes)

CCSM4

Changes in PCP

MIROC

Changes in PCP

Summer (wet)

Relative changes in PCP

∆PCP (%)

And those statistically significant...

Utah

Comparison GCM vs RCM

(Reichler, 2014)

Conclusions of results for the future

- Temperatures consistently show an increment of ~2-4°C in both runs
- In the case of precipitation, however, the results show:
 - Nebraska: Large differences among the different forcing GCMs
 - Utah: Consistent reduction of PCP with all GCMs, especially in winter and spring
 - The results among GCMs and RCMs show clear differences with RCMs showing the same sign for the change

Questions arising from these examples

- What can we say for the future if the model does not perform well for the present?
- Especially if these differences are not just systematic differences but depend on season and space?
- What about different results (even in sign)?

Associated challenges

 Observational data (ground based) could be a problem. For sure, in the case of Bolivia.

Clima y eventos extremos del Altiplano Central

Climate and extreme events from the Central Altiplano

perú-boliviano

- This is true for other data sets as well. Which is the truth ("the egg or the chicken")?
- Steps taken for solving the problem:
 - Tackle the quality of the data directly (not always easy and time consuming)
 - Smart schemes for gridding observations (not classic interpolation) due to the complex topography (NCAR GMET tool for example)

Thank you

Definition of seasons

Utah Estrategia para simulaciones del futuro

Condiciones iniciales y de contorno vienen de CFSR (presente):

 Para el futuro se utilizan los valores del presente corregidos por las anomalías de los GCMs para ese periodo (RCP8.5)

 $Cond. Laterales_{futuro} = Cond. Laterales_{presente} + (Futuro - Presente)_{GCM}$

- El mayor impacto se da en ondas planetarias de larga escala
- Los patrones de tiempo (weather) que entran al dominio (d01) son estructuralmente idénticos tanto en la corrida de control (presente) como en las simulaciones de cambio climático
- Rasmussen et al. (2011), Schär et al. (1996), Kawase et al. (2009), and Hara et al. (2008)

Strategy for simulations for the future

- Decompose Q into climatological mean + 6-hourly deviations: $Q(t) = \overline{Q} + Q'(t)$
- ICBC: WRF initial and boundary conditions

Utah

$$\begin{array}{ll} - \mbox{ control } & \overline{ICBC_{control}} = \overline{R} + R' \\ - \mbox{ future } & \overline{ICBC_{future}} = \overline{R} + (\overline{C}_{future} - \overline{C}_{today}) + R' \end{array}$$

R: reanalysis C: CMIP5 climate model

- Anomaly coupling eliminates climate model biases
- Primary impact is on change in large-scale circulation and thermodynamics
- Transient weather patterns entering domain boundary are structurally identical in control and future simulation (= R['])
- Rasmussen et al. (2011), Schär et al. (1996), Kawase et al. (2009), and Hara et al. (2008)

Changes in PCP

PCP (mm/mes)						
	DJF	MAM	JJA	SON		
ACCESS	-14.0	-12.1	-3.9	-14.5	-11.1	
GFDL	-23.1	-16.5	-5.2	-22.2	-16.8	
MPI	-12.8	-9.8	-2.6	-11.0	-9.1	
MMM	-9.4	-8.9	-3.0	-9.3	-7.7	
	-14.8	-11.8	-3.7	-14.3		

PCP (%)	(b)				
	DJF	MAM	JJA	SON	
ACCESS	-9.9	-11.9	-43.1	-24.8	-22.4
GFDL	-16.2	-23.6	-56.3	-30.4	-31.6
MPI	-9.6	-12.2	-23.0	-17.2	-15.5
MMM	-5.0	-7.0	-30.9	-14.2	-14.3
	-10.2	-13.7	-38.3	-21.7	