

RegCM4-CMIP5 simulations for South America domain: present climate and trends

Rosmeri Porfírio da Rocha Colaborators: M. Llopart, L. Mosso Dutra, M. Reboita, S.V.Cuadra

> Department of Atmospheric Sciences University of São Paulo, Brazil

General aims of Cordex (Jones, 2012)

Generate a coordinated ensemble of high-resolution, historical/future regional climate projections for land-regions of the globe sampling; multiple GCM/RCP/RCM/ESDs methods. 1st phase based on CMIP5 historical-projection runs and/or ERA-int boundary data

Make data accessible & useable in common format/file structure Now ~99% same as CMIP5 and compatible with ESG2.

Foster coordination between downscaling efforts & encourage local participation, in generating, analysing & communicating potential regional climate change and associated uncertainties & risks

I nitial emphasis on African climate & IAV: START/WCRP sponsored 3 analysis/IAV workshops for an Africa-CORDEX team in 2011-12

Similar activities now starting for South Asia, East Asia and South/Central America

- CORDEX-South America:
- First collaborations to CORDEX-SA are from CLARIS-LPB (A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin, 2008–2012) project had aims:
 - predicting the regional climate change impacts on La Plata Basin (LPB) in South America

- designing adaptation strategies for land-use, agriculture, rural development, hydropower production, river transportation, water resources and ecological systems in wetlands.

CLARIS-LPB: 7 regional models were used to the regional climate downscaling (SMHI-RCA, <u>USP-RegCM3</u>, MPI-REMO, UCLM-PROMES, INPE-Eta, MM5-UBA, LMDZ) in the present and future (A1B scenario) climates -> CMIP3 GCMs

CORDEX: RegCM4-CMIP5

- F. Giorgi is leading the use of RegCM4 to downscale CMIP5 GCMs in various of the proposed CORDEX subdomains;
- M. Llopart (USP), under coordination of F. Giorgi and E. Coppolla, was in ICTP to organize the simulations for South America domain;

he Abdus Salam

CORDEX DOMAINS (also Arctic & Antarctica)

 12 domains with a resolution of 0.44° (approx, 50x50km²) Initial Focus on Africa High resolution ~0.11°x0.11° for Europe (~6 institutions)

RegCM4 (USP+ICTP) for CORDEX-SA

Period: 1970-2098 (continuous run)

RegCM4 parameterizations:

CLM land-surface scheme with Emanuel convective scheme Bats land-surface scheme with mixed convection scheme Driven global models: HadGEM2 (Hadrcp85 or Hadrcp45), MPI (MPIrcp85) and GFDL (GFDLrcp85) Four (two) RegCM4 simulations in the RCP8.5 (RCP4.5) with

names/configurations in table.

Future (2006-2098)	Present (1975-2005)	Surface	Convection	RCP	Global model
Had85ctrl	BGRegHad	BATS	Mixed	8.5	HadGEM2
Had85CLM	CERegHad	CLM	Emanuel	8.5	HadGEM2
Had45ctrl		BATS	Mixed	4.5	HadGEM2
Had45CLM		CLM	Emanuel	4.5	HadGEM2
MPI85CLM	CERegMPI	CLM	Emanuel	8.5	MPI
GFDL85CLM	CERegGFDL	CLM	Emanuel	8.5	GFDL
	Erainterim	BATS	Mixed		

RegCM4 simulation domain (CORDEX) Includes all South America continent and part of Atlantic and Pacific oceans

AMZ and LPB boxes

Common aspects of the simulations:

Horizontal resolution ~ 50 km (rotated Mercator projection)

Vertical sigma levels = 18

Topography and land-use: USGS and GLC (Loveland et al. 2000)

Initial and boundary conditions: ERAInterim and GCMs

Observations RegCM4 precipitation is compared with the monthly climatology of four different datasets: 1) CMAP - Climate Prediction Center merged analysis of precipitation (Xie and Arkin 1996). (continent+ocean). 2.5°x2.5° 2) CRU - Climate Research Union of the University of East Anglia (Mitchell and Jones 2005). only continent - $(0.5^{\circ}x0.5^{\circ})$ 3) CPC - Climate Prediction Center (Chen et al. 2008) - only continent - $(0.5^{\circ} \times 0.5^{\circ})$ 4) UDEL - University of Delaware (ULegates and Willmott 1990) - only continent - $(0.5^{\circ}x0.5^{\circ})$ We combine these coarse and fine resolution observations to cover oceans and land points \rightarrow EnsObs

Simulations reproduce the more intense rainfall in SACZ in agreement with obs.

Problems: (1) excessive rainfall in eastern NE Brazil in the EnsGCMs (due the MPI model) that is only partially improved in EnsRegCM4; (2) too much rainfall in the subtropical anticyclonic areas (Pacific and Atlantic);

and southeastern (storm tracks) of SA

Seasonal precipitation (mm/day)

LPB . DJF smaller bias in EnsReg than EnsGCM JJA EnsReg similar EnsGCM

LPB	DJF		JJA	
EnsObs	4.7 [5.0]	5.1	2.1 [2.2]	2.3
EnsRegCM4	4.2 [5.2]	5.8	1.5 [1.8]	2.3
EnsGCM	4.5 [5.5]	6.4	0.6 [1.8]	2.9
	Min Mean	Max	Min Mean	Max

AMZ: DJF biases are low (<10%)

Large biases occurs in winter due mainly one dry simulation

AMZ	DJF	JJA
EnsObs	8.9 [9.4] 9.7	0.82 [0.92] 0.95
EnsRegCM4	6.8 [8.7] 10.9	0.30 [0.60] 0.94
EnsGCM	8.8 [9.8] 10.7	0.10 [0.50] 1.30

Trends: austral summer

Ensemble of the change in precipitation (mm/day): future minus present climate.

Large agreement between simulation about positive (negative) trends over southeastern (northern) South America, which is more intense over large areas in far future/rcp8.5

Trends: austral winter

Ensemble of the change in precipitation (mm/day): future minus present climate.

Large agreement in simulating no changes in pcp over continental SA in near future; North/northwest SA \rightarrow negative trends in pcp in far future

Trends: austral spring

Ensemble of the change in precipitation (mm/day): future minus present climate.

positive (negative) trends over southeastern (northern) South America => more intense over large areas in far future/rcp8.5

Near future (2020-2050)present (1975-2005)

RCP4.5–RegCM4

RCP8.5-RegCM4

RCP8.5-GCM

Far future (2070-2098)present (1975-2005)

numbers indicate how many members have the same signal (+ or -) of the ensemble mean.

Simulations RegCM4-CMIP5:

some regional improvements compared with GCMs; → low spread; trends: increase/decrease of rainfall and temperature follows GCMs, but some regional details are also noted;

Next:

to compare simulated fields in present climate in more details looking for regional aspects and using high resolution analysis; to analyze systems (cold front, cyclones, etc); to make the simulation available in CORDEX database soon (common format of data).

" Thanks!

- " Gracias!
- " Obrigada!

Trends: austral autunm

Ensemble of the change in precipitation (mm/day): future minus present climate.

Band northwestern/southeastern oriented of positive (negative) trends \rightarrow more intense and organized in RegCM4 far future-rcp8.5

Reg4Cor - Interannual Variability

Time series of 5 months running mean of normalized monthly precipitation anomaly CMAP (black) x Reg4Cor (red)

Precipitation was normalized by:

$$P_N = \frac{x_i - \bar{x}}{\bar{x}}$$

where x_i is the monthly mean and x is the monthly mean of the period from 1989 to 1996

Reg4Cor captures adequately the inter monthly variability over AMZ and LPB boxes

Annual cycle statistics - mean, standard deviation, bias, rmse and correlation (r)

Precipitation					
Region	СМАР	Reg4Cor	Bias	RMSE	r
AML	5.9±3.3	7.9±3.9	2.1	2.2	0.98
AMZ	5.3±3.4	3.3±2.0	-2.0	2.5	0.99
NDE	2.8 ± 1.4	2.0 ± 1.7	-0.8	0.96	0.97
LPB	3.9±1.2	2.7±1.0	-1.2	1.3	0.92
LUR	3.8±0.4	2.7±0.4	-1.2	1.2	0.78

RegCor

Temperature						
Region	Willmott	Reg4Cor	Bias	RMSE	r	
AML	26.0±0.5	24.2±0.6	-1.8	1.9	0.38	
AMZ	25.3±0.6	25.9±1.3	0.6	1.4	0.21	
NDE	24.9±0.9	25.5±0.8	0.5	0.8	0.71	
LPB	20.9±3.6	22.6±4.9	1.7	2.2	0.99	
LUR	17.3±4.7	17.0±3.8	-0.3	1.8	0.93	

- annual cycle of precipitation is in phase with observation

- in relative terms the precipitation biases are small in tropics than in subtropics

- Reduction of RegCM3 % permanent+cold bias over SA

Daily precipitation: CPC, RegClaris and Reg4Wet

AMZ: increase of rainfall occurs due the events of intermediary intensity;

NDE: increase of rainfall is due to the intense events (greater than 5 mm/day)