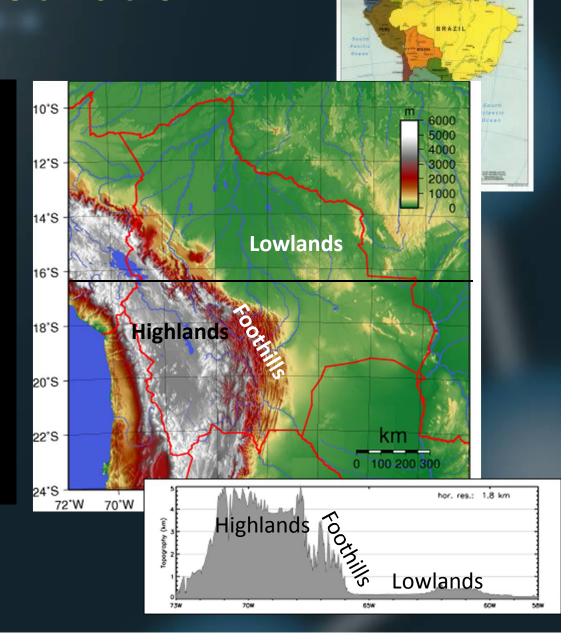


Thomas Reichler¹ & Marcos Andrade²

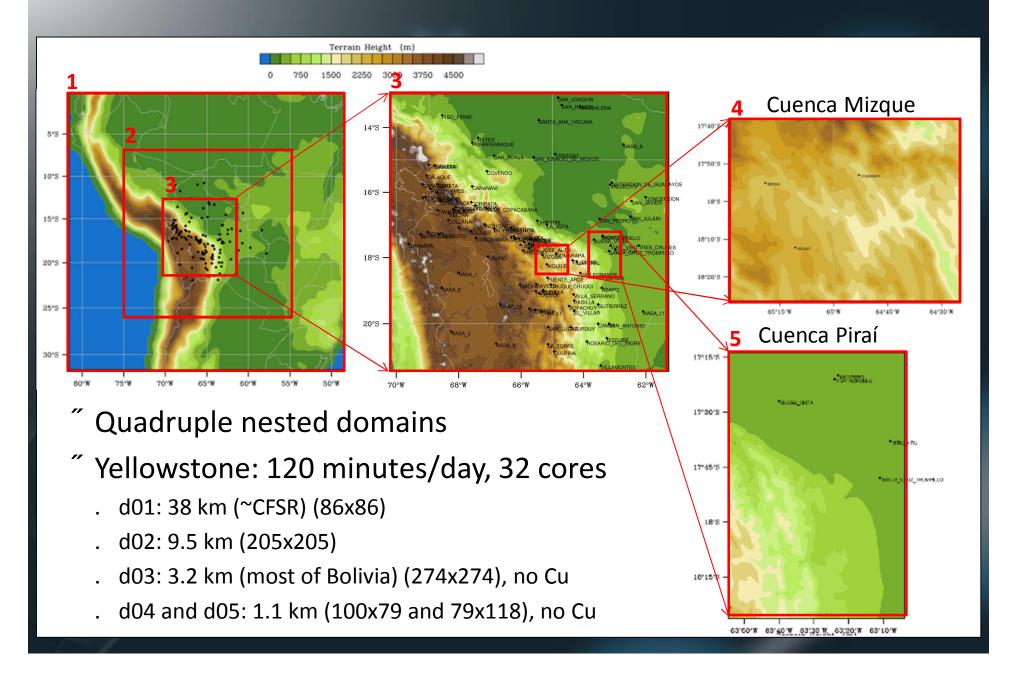
¹Department of Atmospheric Sciences University of Utah ²Laboratorio de Física de la Atmósfera Instituto de Investigaciones Físicas Universidad Mayor de San Andrés


Outline

- " Background
- " Technical Implementation
 - . domains
 - . coupling
 - . climate model selection
- Optimal WRF Configuration:

 Sensitivity Experiments and Results
- " Outlook

Motivation


- 10 Mio. inhabitants
- " 1 Mio. Sq. km
- Main threat change in hydrological cycle
- Complex topography
- Three distinct climate zones
- Tropical physics and dynamics

Technical Implementation

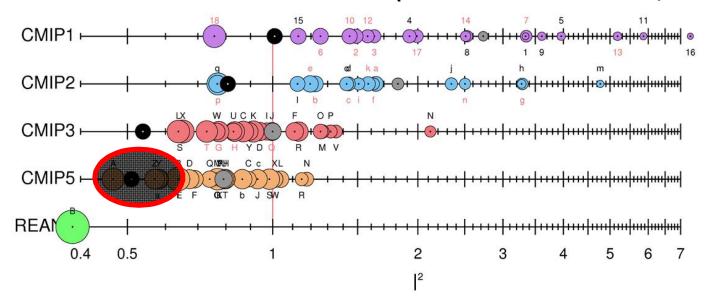
- " WRF-ARW V3.X; NOAH LSM
- Dynamical regional downscaling at 3 and 1 km
 - . NCEP-CFSR (38 km)
 - 6 hourly
 - " 20 years: 1991-2010
 - . CMIP5 models
 - " RCP8.5
 - " 20 years: 2041-2060
 - " 4 selected models
- " 100 simulation years
- " New NCAR's Yellowstone system

Resolution and Domains

Coupling Strategy

Initial and lateral Boundary Conditions for outer WRF domain:

- . Present-day control simulation: 6-hourly CFSR
- . Climate change simulation: 6-hourly CFSR, anomaly corrected with monthly mean CMIP5 (RCP8.5)


$$ICBC_i = CFSR + \overline{CC_i}$$

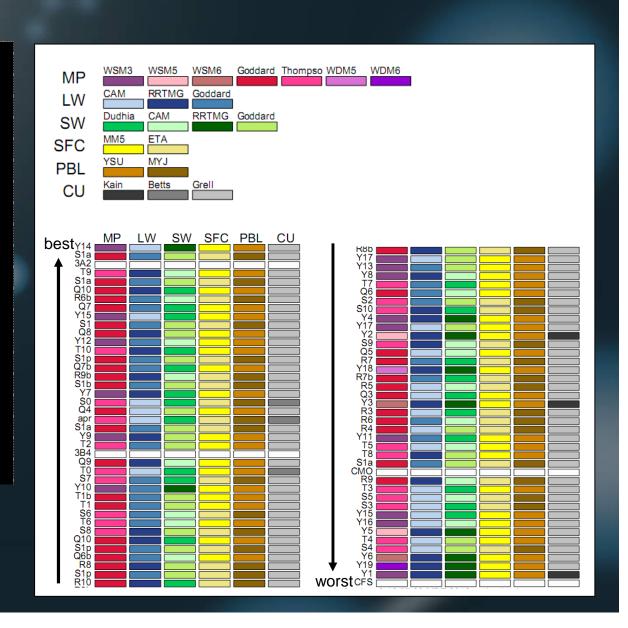
 $\overline{CC_i}$: mean climate change signal from model i CFSR: 6-hourly CFSR reanalysis, present climate

- . Primary impact is on large-scale planetary waves and thermodynamics
- . Weather patterns entering domain boundary are structurally identical in control and climate change simulation
- . Rasmussen et al. (2011), Schär et al. (1996), Kawase et al. (2009), and Hara et al. (2008)

Selection of Climate Models

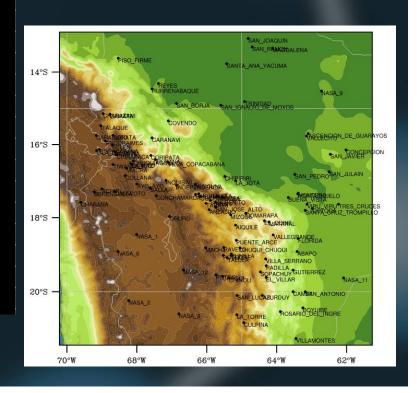
- We use four climate models. Which ones?
- " Model performance test for mean climate; globally and over South America (Reichler and Kim, 2008):

- Selected models:
 - . CSIRO-ACESS1-0, MPI-ESM-MR, GFDL-CM3, NCAR CCSM4

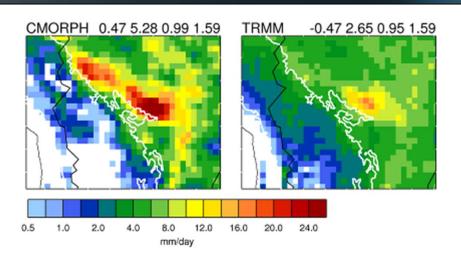

WRF is Not Just One Model!

- WRF contains different physics and dynamics parameterizations
 - . microphysics
 - longwave radiation
 - shortwave radiation
 - surface layer physics
 - . land surface physics

- . planetary boundary layer
- . cumulus clouds
- . shallow convection
- . diffusion and damping
- etc.
- " Large number of different model configuration
- Finding the best configuration is difficult and unphysical, but it allows optimizing WRF to the specific domain

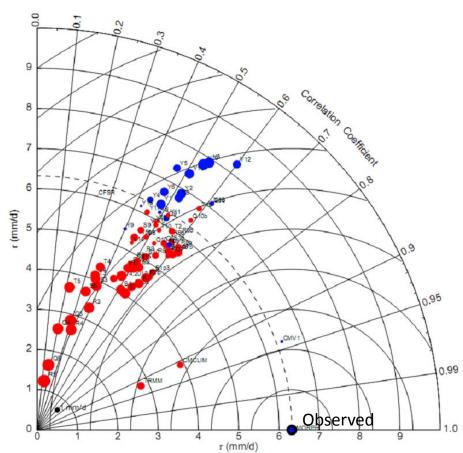

Sensitivity Experiments

- 75 experiments
- January 2003
- " Mostly physics: MP, LW, SW, SFC, PBL, CU
- Also: spectral nudging and perturbed initial conditions


Validation Data

- " Precipitation only:
 - . January 2003
- 1. Gridded satellite-data
 - . CMORPH
 - . TRMM: 2A25, 3B42, 3B43
- 2. In-situ station data from Bolivian National Weather Service

Monthly Mean Precipitation

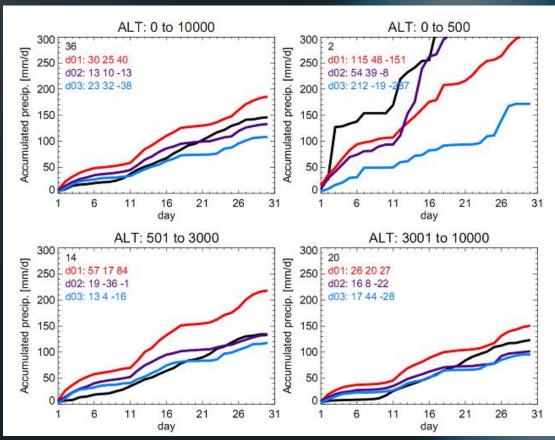

January 2003

- 1. bias
- 2. stddev
- 3. corr
- 4. crms

Monthly Mean Precipitation

modified from: Taylor 2001

Combined Ranks


- "Rank models according to simulation performance for Jan monthly mean precip.
 - . 3 statistics: mean bias, spatial correlation, and center RMS error
 - . all three model domains

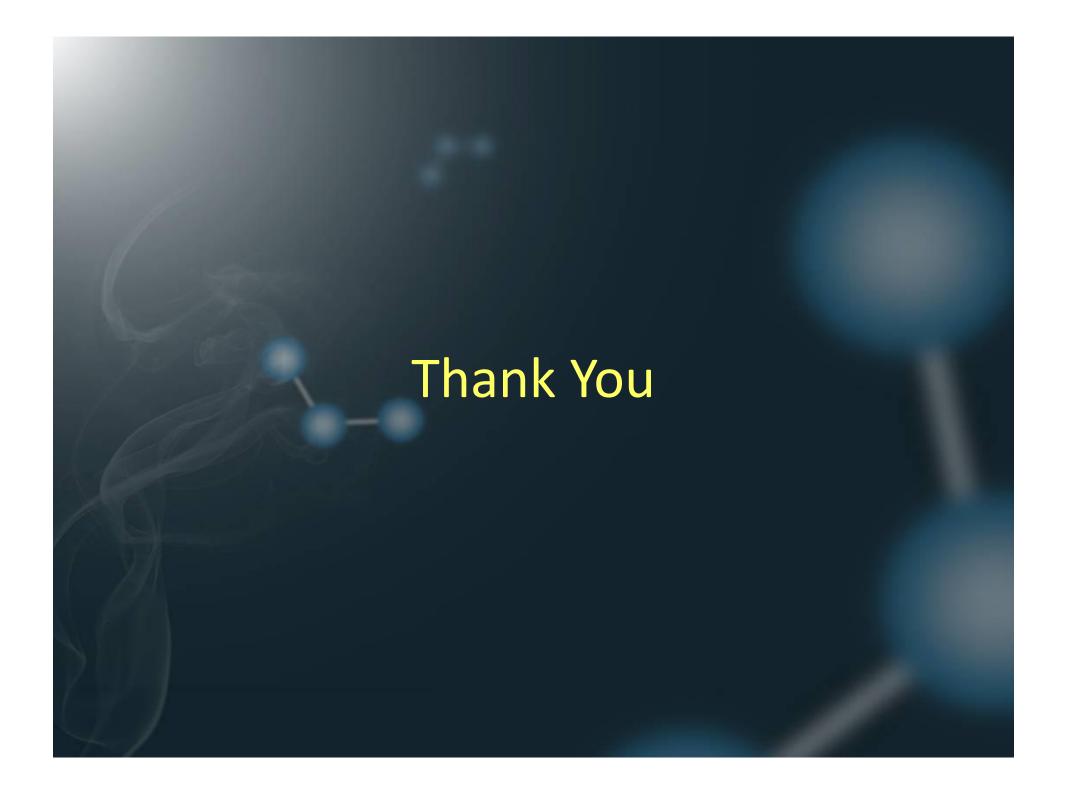
CMORP 237	CMV1 224	CMCLI 200	TRMM 198	S1p3	S1 191	S1p1	Q7 183	R6 175	T1 173	S1p2	Q6 188	R7 184	Q10 163	Y17
R6b 180	S1a	R9 158	S1 ap3	R8 157	Y15	S1b 154	Y11	R9b	Y10	T2 147	Q6b	Y13	Q10b	Q8 143
R10	T1 b	Q7b 140	Y7 139	R8b 139	R7b 135	S1ap1	Y14 134	S2 129	T1 0 128	T8 128	T9 127	S8 123	Q9 119	Y9 118
Y16	S10	T7	T6 109	S7 108	Y17b	Y12	S9 102	Y15b	S6	TO 91	S1 ap2	Y4 80	Y8 78	CFSR
Y5 73	T4 73	apr14	Y6	S4 83	R3	Y2 58	T3 58	S3 58	Y18	Y1 53	Y3 53	Y19	S5 45	R4 38
Q3 32	Q4 21	T5	Q5 18	R5										

Validation Against Station Data

We also validated against rain gauge observations at specific stations

Example: temporal evolution of simulation S1 precipitation at different altitude ranges

black: station data


Validation Results

Based on our sensitivity experiments, we decided to use the following model configuration

parametrización / option	esquema / scheme					
microphysics	Goddard					
longwave radiation	Goddard					
shortwave radiation	Goddard					
surface layer	ETA					
land surface	Noah					
planetary boundary layer	Mellor-Yamada-Janjic					
cumulus convection	Grell-Devenyi					
spectral nudging	yes (grid_fdda=2)					
nudging coefficient	0.0003					
xwavenum	4					
ywavenum	3					

Current Project Status

- We just finished the 20 year simulations for present-day climate, using CFSR reanalysis as boundary conditions
- "Next: 4 climate model simulations
- " Projected to be finished by the end of this year

