

Assessment of Climate change impacts on grain crops for the Southern Brazil – projections from SA CORDEX

Dr. Santiago Vianna Cuadra, Ph.D (santiago.cuadra@embrapa.br) Embrapa Temperate Climate, Embrapa

Clima Temperado

Embrapa

. Help Brazil to achieve a competitive and sustainable agriculture

Clima Temperado

.Climate Change & Agriculture

Mitigation (of climate change)		Adaptation
A human intervention to reduce the sources or enhance the sinks of greenhouse gases (GHG).		Initiatives to reduce the vulnerability of natural and human systems against actual or expected climate change effects.
Driver (Climate Change)	<section-header></section-header>	Adaptation

. Impacts of atmosphere warming

. Risk reduction of damages associated with low temperature in Rice over RS

Source: Steinmetz et al. (2005)

. Impacts of atmosphere warming

. Risk reduction of damages associated with <u>low temperature</u> in Rice over RS

Source: Steinmetz et al. (2005)

. Impacts of atmosphere warming

. Risk increase of damages associated with <u>high temperature</u> in Rice over RS

Maximum Temperature (°C)

Source: Steinmetz et al. (2005)

.Climate Change & Agriculture

Models as a tool to scaling-up and test hypothesis: Mitigation and Adaptation

» Biophysical Models

. Methodology

•MPI

. Methodology – RegCM4

Validations of Agro-IBIS over Brazil

GCB Bioenergy (2011), doi: 10.1111/j.1757-1707.2011.01105.x

A biophysical model of Sugarcane growth

Earth Interact., **16**, 1–15. Evaluation of a Dynamic Agroecosystem Model (Agro-IBIS) for Soybean in Southern Brazil

Geovane Webler and Débora Regina Roberti*

Physics Department, Federal University of Santa Maria, Santa Maria, Brazil

Santiago Vianna Cuadra

Scatterplot between simulated and experimental soil volumetric water content data for the 0–0.2-, 0.2–0.5-, and 0–0.5-m layers.

. Applications

nature climate change

LETTERS PUBLISHED ONLINE: 10 JANUARY 2012 | DOI: 10.1038/NCLIMATE1346

Climate-regulation services of natural and agricultural ecoregions of the Americas

Kristina J. Anderson-Teixeira^{1,2,3}, Peter K. Snyder⁴, Tracy E. Twine⁴, Santiago V. Cuadra⁵, Marcos H. Costa^{6,7} and Evan H. DeLucia^{1,2,3}*

Landscape Ecology Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: implications for the provision of ecosystem services --Manuscript Draft--

. Methodology: Simulations over Rio Grande do Sul State

Present Climate:
CRU3.0 (1988-2006)

Future Climate:CRU3.0 + RegCM4 (Anomaly)

Anomaly $- T_{(2069-2098)} - T_{(1975-04)}$

. Results

. Soybean Yield over the tree main meso-regions of RS state

. Results

. Soybean Yield over the tree main meso-regions of Rio Grade do Sul state

Year

Climate Projections CMIP5 (RCP8.5)

Climate Change projections for Precipitation over South Brazil

Climate Projections CMIP5 (RCP8.5)

m0

m1 m2

m3 m4

m5 m6

m7 m8 m9

m10 m11 m12 m13 m13

m15

m16

m17

•m18 •m19

m20

m21 m22 m23 m24 m25 m26 m27 m28

m29

-m30

m31 m32 m33

-m34

Climate Change projections for Temperature over South Brazil

Models suggest that not only the mean is going to change, but also its variability (standard deviation)

Models

. Climate Projections (RCP8.5) RegCM4 – Temperature Anomaly

GrADS: COLA/IGES

. Climate Projections (RCP8.5) RegCM4 – Precipitation Anomaly

. Climate Projections (RCP8.5) RegCM4 – Soybean Yield Anomaly

54%

5190

5011

4911

GrADS: COLA/IGES

Clima Temperado

. Soybean Yield Anomaly (2069-98)

Results summary

» Although P INCREASE over west RS, there is a water balance deficit., over the west meso-regions – where almost all soybean is cultivated nowadays

Clima Temperado

. Soybean Yield Anomaly (2069-98)

Results summary

- » Although P INCREASE over west RS, there is a water balance deficit., over the west meso-regions – where almost all soybean is cultivated nowadays
- » This is result of temperature increase, and, consequently, ETP

. Climate Projections (RCP8.5) RegCM4 – Precipitation Anomaly

GraDS: COLA/IGES

Clima Temperado

. Soybean Yield Anomaly (2069-98)

Results summary

- » Although P DECREASE over northeast RS, crop yield increase
- » This may be associated with temperature increase

. Climate Projections (RCP8.5) RegCM4 – Temperature Present

GrADS: COLA/IGES

. Climate Projections (RCP8.5) RegCM4 – Temperature Future

GrADS: COLA/IGES

. Next Steps

Climate Change: Average & <u>Variability</u>

Crop development is affected not only by the mean atmospheric conditions (average climate), but also by the frequency of extreme events such as frost, heat waves, floods, and droughts; or even recurrent conditions unfavorable to crop growth.

Photosynthesis is not linear related with temperature

. Climate: Average & Variability

. Climate: Average & Variability

. Future Steps

Work on models Limitations

» Representing crops into RegCM4 – consider not only the biochemical, but also the biophysical impacts of land use and cover changes (include crops).

- Include other processes into Agro-IBIS -It is always important to be aware that some physical processes are well formulated, others very uncertain, and
- some are not considered!

》

Many Thanks.

Dr. Santiago Vianna Cuadra

Brazilian Agricultural Research Corporation -Embrapa, National Temperate Agriculture Research Centre, Brazil e-mail: santiago.cuadra@embrapa.br Phone: (53) 3275-8273

Ministry of Agriculture, Livestock and Food Supply

