

“New paradigms”
 for the CP climate simulation:

GPU, C++
Graziano Giuliani

ggiulian@ictp.it
Francesca Raffaele

 ICTP ESP

mailto:ggiulian@ictp.it

CP Simulation

DOMAIN
dimension:

iy = 570
jx = 730
kz = 41
ds = 4.0

Run realization credit:
Francesca Raffaele
<fraffael@ictp.it>

CP Simulation

DOMAIN
dimension:

iy = 570
jx = 730
kz = 41
ds = 4.0

Run realization credit:
Francesca Raffaele
<fraffael@ictp.it>

CORDEX
dimension:

iy = 500
jx = 480
kz = 23
ds = 25.0

Performance
1 month ~ 4 hours
1 year ~ 2 days
150 years ~ 1 year!

Node #

W
al

l-t
im

e
h r

s
/ s

im
ul

at
ed

 m
on

th
s

Run performance credit:
Francesca Raffaele
<fraffael@ictp.it>

HPC trends
NCAR CDC 6600
Control Data Corporation
In use: December 30, 1965 - May 20, 1977
Production use
Peak teraflops: 0.00
Processors: 1.00
Clock speed: 0.01GHz
Memory: 0.00TB
Predecessor: CDC 3600
Successor: CDC 7600

https://www2.cisl.ucar.edu/ncar-supercomputing-history/cdc6600

ECMWF
Cray XC40 cluster

● Aries™ interconnect.
● Intel Xeon processors 2.1 GHz
● 8.49 Teraflops
● 129,960 cores over 3610 nodes

https://www.ecmwf.int/en/computing/our-facilities/supercomputer

Linux Cluster
General purpose processor
MPI interconnect

JMA

Hitachi
Cray XC50

https://www.jma.go.jp/jma/en/News/JMA_Super_Computer_upgrade2018.html

Linux Cluster
General purpose processor
MPI interconnect

NCAR
NCAR CHEYENNE
SGI ICE XA Cluster
In use from January 2017
Peak petaflops: 5.34
Processors: 145,152 over 4,032 nodes
Clock speed: 2.3 GHz (Intel Xeon)
Memory: 313TB
Mellanox EDR Infiniband

https://www2.cisl.ucar.edu/computing-data/computing#cheyenne

Linux Cluster
General purpose processor
MPI interconnect

DKRZ Levante
● BullSequana XH2000
● Two partitions (CPU and

GPU)
● 2832 nodes with 362496

CPU AMD EPYC
● 240 NVIDIA A100 GPUs
● 130 Petabyte filesystem Linux Cluster

General purpose processor
MPI interconnect

https://www.dkrz.de/en/systems/hpc

Super Computers
TOP500

Di AI.Graphic - Opera propria, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=33540287

CPU trend
● CPU market has moved to

laptop/mobile
– Low power
– mix high and low performance

cores on one chip
● HPC exa-scale systems will

be power hungry hogs and
energy consumption MUST
be minimized (convergence
on different architecture?
ARM? RISC-V?)

GPU
● Hardware acceleration is the use of computer

hardware designed to perform specific functions
more efficiently when compared to software
running on a general-purpose CPU. [Wikipedia]

● Out of gaming and into GPGPU
– 2001: programmable shaders and floating point

support on graphics processors
– 2003: GPU-based solution of general linear algebra

problems: reformulating computational problems in
terms of graphics primitives

Cost
● An HPC GPU has a price of 10 - 25k
● An HPC CPU has a price in the range 1 – 10k

● Cost effective:
Cost is in the mean an order of magnitude greater:
code running on a GPU must run at least 10x faster

than the same code on CPU. To be included in
vendor success story a 100x is required.

Low level tools
● Vendor usually provide SDK for the GPU programming allowing low level access.

– To get the level of performances expected the computation must be on the GPU
– Memory transfer between GPU memory and system memory are a bottleneck and should be reduced
– Only latest cards allow GPU-GPU direct transfer and MPI aware GPU only recently is an option

● SDK are hardware vendor provided and push for a lock into the hardware solution
● Vendor agnostic solutions use only an intersection subset of the available resources
● Complete control over the hardware for optimization is usually provided through a C/C++

library directly interacting with the low-level hardware driver. Fortran interface again is usually
late coming, has reduced capabilities and is vendor locked.

● Missing direct generic code optimization for accelerator as the one given for CPU targets

Accelerate weather?
● MeteoSwiss - Cray CS-Storm

supercomputer at CSCS with
96 GPUs (old K80)

● First national meteorological
service using GPUs for
operational NWP in 2016

● 4 years of development with
strong investment from NVIDIA

Leutwyler, D., Fuhrer, O., Lapillonne, X., Lüthi, D., and Schär, C.: Towards European-scale convection-resolving climate simulations
with GPUs: a study with COSMO 4.19, Geosci. Model Dev., 9, 3393–3412, https://doi.org/10.5194/gmd-9-3393-2016, 2016.
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C.,
and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0,
Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018.

C++?
● Specialized compilers composed from domain- and

target-specific dialects implemented on top of a
shared infrastructure.
– Tobias Gysi, Carlos Osuna, Oliver Fuhrer, Mauro Bianco,

and Thomas C. Schulthess. 2015. STELLA: a domain-
specific tool for structured grid methods in weather and
climate models. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC '15). Association
for Computing Machinery, New York, NY, USA, Article 41,
1–12. https://doi.org/10.1145/2807591.2807627

– Osuna, C., Wicky, T., Thuering, F., Hoefler, T., & Fuhrer,
O. (2020). Dawn: a High-level Domain-Specific Language
Compiler Toolchain for Weather and Climate Applications.
Supercomputing Frontiers and Innovations, 7(2), 79–97.
https://doi.org/10.14529/jsfi200205

https://doi.org/10.1145/2807591.2807627
https://doi.org/10.14529/jsfi200205

Accelerate climate?
● NCAR Casper cluster : specialized data analysis and visualization resources;

large-memory, multi-GPU nodes; and high-throughput computing nodes
● ECMWF : Virtual GPU features 2x5 NVIDIA Tesla V100 cards targeting

Machine Learning workloads.
● DKRZ Levante : CPU and GPU partition

● Atos Bull Sequana XH2000 370,000+ cores
● CPU : 2,832 compute nodes AMD 7763 64 cores → 14 Petaflops
● GPU : 60 nodes with 4 A100 GPUs each → 2.8 Petaflops

Giorgetta, M. A., Sawyer, W., Lapillonne, X., Adamidis, P., Alexeev, D., Clément, V., Dietlicher, R., Engels, J. F., Esch, M., Franke,
H., Frauen, C., Hannah, W. M., Hillman, B. R., Kornblueh, L., Marti, P., Norman, M. R., Pincus, R., Rast, S., Reinert, D., Schnur,
R., Schulzweida, U., and Stevens, B.: The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514),
EGU sphere [preprint], https://doi.org/10.5194/egusphere-2022-152, 2022.
Jae Youp Kim, Ji-Sun Kang, Minsu Joh, GPU acceleration of MPAS microphysics WSM6 using OpenACC directives: Performance
and verification, Computers & Geosciences, Volume 146, 2021, 104627, ISSN 0098-3004, https://doi.org/10.1016/j.cageo.2020.104627.

One model to rule them all
● We treat model as independent entities, amenable to

statistical treatments such as averaging or taking standard
deviations to identify uncertainty, even though the models
represent only limited explorations in a potentially huge
conceptual space, but...
– Shared history of climate models1: inappropriate to treat different

climate models as randomly sampled independent draws from the
hypothetical model space

● The actual future may well be outside the set of modeled
futures

● Nevertheless, using different models gives us an idea about
uncertainty: the more the models, the more the information, as
long as their independence is not hindered2

1) Masson, D., and Knutti, R. (2011), Climate model genealogy, Geophys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.
2) Brunner, L., Pendergrass, A. G., Lehner, F., Merrifield, A. L., Lorenz, R., and Knutti, R.: Reduced global warming from CMIP6
 projections when weighting models by performance and independence, Earth Syst. Dynam., 11, 995–1012
, https://doi.org/10.5194/esd-11-995-2020, 2020.

https://doi.org/10.5194/esd-11-995-2020

Climate modeling
We, therefore, the Representatives of the united Modelling Groups of the World,
in AGU Congress, Assembled, appealing to the Supreme Judge of the model
ensemble for the rectitude of our intentions, do, in the Name, and by Authority of
the good People of these modeling Centers, solemnly publish and declare, That
these disparate Models are, and of Right ought to be Free and Independent
Codes, that they are Absolved from all Allegiance to NCAR, GFDL and Arakawa,
and that all algorithmic connection between them and the Met Office of Great
Britain, is and ought to be totally dissolved; and that as Free and Independent
Models, they have full Power to run Simulations, conclude Papers, contract
Intercomparison Projects, establish Shared Protocols, and to do all other Acts
and Things which Independent Models may of right do. And for the support —
of this Declaration, with a firm reliance on the protection of Divine PCMDI, we
mutually pledge to each other our Working Lives, our Git Repositories, and our
sacred H-Index.

https://www.realclimate.org/index.php/archives/2018/07/model-independence-day/

Inclusive by design
● As long as they produce good and independent

results, different models should not be phased
out because they do not perform

● Using just a single model would just not do.

https://docs.esmvaltool.org/en/latest/recipes/recipe_climwip.html

Today dilemma
● HPC Tier-0 centers are moving to GPUs

– All rising or stable #top500 systems are GPU based
– AI is the new Buzzword and HPC supports AI workloads on GPU
– Example: Italy CINECA: EU and Italian funds for innovation and

research, 112 members for 4295 users
– 2012 IBM Blue Gene/Q ← ICTP RegCM running
– 2016 Lenovo Marconi Xeon Cluster + Phi accelerators ← ICTP RegCM running
– 2020 IBM Marconi-100 Power9 + Nvidia Tesla ← ICTP RegCM not qualified
– 2022 Leonardo Xeon + 14000 Nvidia Ampere ← ICTP RegCM not qualified

GPU code
Without measurable GPU
performances, ICTP RegCM will not
be allowed access to new pre-
exascale CINECA computing
resources.

● What is the effort of the “porting to
GPU”?

● Do we have enough human and
financial resources?

Climate Programming

Why stick with Fortran?
● Longevity – old code still works 50+ years on
● First class arrays
● Performance
● Numerical libraries
● MPI compatibility
● Parallelization STANDARD (co-arrays) never

picked up: missing implementations supporting
the standard out of the multi-core environment
and into the multi node environment. Good idea
but GPU vendors lack of interest dooming the
implementation to remain viable only for multi-
threaded scenarioes.

Babi Hijau - Photo taken by own, Pubblic domain,
https://commons.wikimedia.org/w/index.php?curid=2801324

C++
● Born 1979 as C extended to OO features
● System, performance, design
● ISO standard
● Interoperability
● Libraries

Fortran/C++ interoperability
● Fortran 90 modules share functionality with classes and namespaces in C++

– Example: function add_abs in module mymod becomes:
__mymod_MOD_add_abs

● C++ namespaces are encoded in symbols
– Example: int func::add_abs(int,int) becomes:

_ZN4funcL7add_absEii
● C++ classes are encoded the same way. No overloading is possible.
● Figuring out which symbol to encode into the object as undefined is the job of the

compiler. Different compilers will differently mangle the symbols in produced
objects.

NOT EASILY PORTABLE

C++ and GPU
● Direct access to the hardware through

vendor provided libraries
● Must create computation Kernels: part

of the code that will be executed on
the GPU using memory on the
accelerator

● Reduction and optimization of the data
transfer through PCI bus CPU memory
↔ GPU memory

● Domain Specific Languages

Porting Fortran → C++
● Time consuming : 4-5 years time-frame
● Programmers Team : C++ developers are not

cheap and are not easily enticed in academic
environment

● GPU vendor help is linked to the big contract
on new hardware acquisition or the viability of
the technology for a community as a buzzword
to attract users

● Model code may become “unreadable” for
scientists: requires generational and curriculum
changes

ICTP RegCM and ESIWACE2

● ESIWACE: push the global high-resolution models
towards production on European pre-exascale
systems, which are aimed to be set up in 2021

● Six months of consulting and help from GPU experts
on how to help us on GPUs

● Project expected to complete by the end of fall and the
code contributed to RegCM github official repository.

Phase 1: Code evaluation
● Code MUST be OpenSource and on a

public repository.
● Model must coded in a compiled language

such as Fortran, C or C++
● The produced modification during the

project MUST be included in the public
model repository

Phase 2: Methodology
● Porting to C++: not feasible in the allotted

time-frame and provided resources
● Duplicate the code with a GPU separate

code-base: not accepted because of
maintainability concerns

● Add OpenACC pragma (comments)
directives to instrument the compiler (if
supported by it) to transform part of the
code in GPU executable kernels: feasible
and accepted by the ICTP

Phase 3: Implementation
● Identify a limited part of the code to act as a blueprint

for RegCM developer to complete the work after project
completion: taken the dynamical core module

● Instrument all loops as possible kernels to offload on
GPUs

● Asses results are the same on CPU and GPU:
expected to have worse performances on GPU
compared with CPU

● Merge kernels together to reduce context switching:
aim is to increase performances on GPU by reducing
MPI tasks: from one task per core to one task per CPU

● Communication optimization: MPI GPU aware: reach
the target performance by tuning the GPU-GPU data
transfer layer: ONGOING

Conclusion
● Climate modeling needs to adapt to a changing HPC world where future trends in

CPU and accelerators are much less streamlined than they were in the past 20
years

● GPU adoption in multi-purpose national and international HPC center is strongly
pushing modeling groups to have model code that can use those resources

● C++ language, even though showing HPC performances equivalent to Fortran and
the low level hardware access to directly interface with vendor provided GPU API, is
not part of the curriculum of the Atmospheric Physicist. Moving to C++ would require
resources not available to most modeling groups and would phase out a big part of
the code-base and multi decade expertise with well known and well maintained
programming patterns.

● Fortran programming language has no working abstraction for heterogeneous
multiprocessing and must use directive based instrumentation which are vendor
supported and not part of the programming standard. MPI is going to stay.

Note for thought: New languages are coming up!

Julia is really promising in terms of performances and we have the first model and tools.

https://clima.caltech.edu
https://juliaclimate.org

https://clima.caltech.edu/
https://juliaclimate.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

