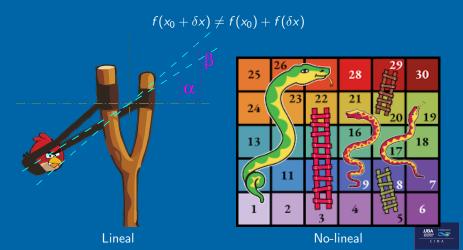
El clima, su estudio y bases de datos

L. Fita¹

¹Centro de Investigaciones del Mar y la Atmósfera (CIMA), IRL IFAECI UBA - CONICET - CNRS - IRD, C. A. Buenos Aires, Argentina

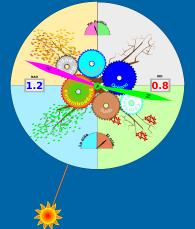
iJHITdD, C. A. Buenos Aires, 5 Noviembre 2024


Sistema Climático

• El sistema climático, altamente no lineal interacción de diversos fluídos energetizados por el sol

Sistema Climático

 El sistema climático, altamente no lineal interacción de diversos fluídos energetizados por el sol

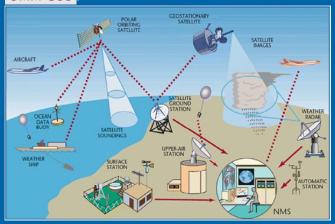


repetir mismas tiradas \pm 1

Sistema Climático

• El sistema climático, altamente no lineal interacción de diversos fluídos energetizados por el sol

Distintas características cada componente (velocidad respuesta, tamaño, ...):



• El sistema climático se mide con múltiples instrumentales OMM-GOS :

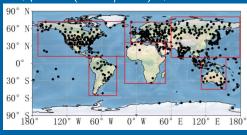
El sistema climático se mide con múltiples instrumentales

OMM-GOS:

- El sistema climático se mide con múltiples instrumentales
 OMM-GOS:
- Estaciones de superficie: estaciones fijas en un punto spuerficial: temperatura, viento, humedad, precipitación, (frec. 10' a 6H) 17,500

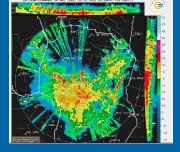
WMO Regional Basic Synoptic Network - surface station

gob.ar


Liu, Chian-Yi y otros (2014)

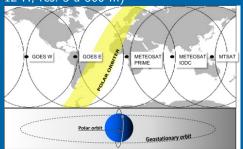
• ¡ Todas las estaciones del mundo caben en una cancha de fútbol !

- El sistema climático se mide con múltiples instrumentales OMM-GOS:
- Sondeos verticales: globos sonda midiendo la vertical: temperatura, viento, humedad, presión (frec. 6/12 H) 1,000


criticasur

Qiao, Yale y otros (2023)

- El sistema climático se mide con múltiples instrumentales OMM-GOS:
- Radares: observación 3-dimensional desde la superficie: reflectividad
 → precipitación, viento (frec. 10', res. 5 m)



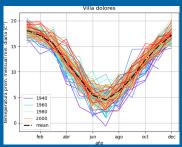
SMN, gob.ar

- El sistema climático se mide con múltiples instrumentales OMM-GOS:
- Satélites: equipos orbitando la tierra: reflectividad a distintas frecuencias de onda (visisble, IR, ...)
 - Geoestacionario: Satélite sincronizado con la rotación terrestre, fijo en el cielo (frec. 5', res. 0.5 a 3 km)
 - Polar: Satélite sincronizado con el sol, no fijo en el cielo (frec. 12 H, res. 5 a 500 m)

Climatología

- La climatología describe el comportamiento del valor medio del sist. climático
- La predicción meteorológica a corto plazo aporta información sobre el estado exacto del sist. climático en el futuro cercano
- El detalle de la predicción depende del alcance temporal

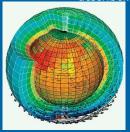
Meteorología \neq Climatología

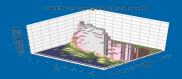


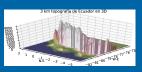
	Corto plazo	Estacional	Cambio climático
alcance	3 días	3 meses	50 años
predicción	valor instantaneo	promedio mensual	promedio 30 años
ejemplo	56 horas	próximo verano	invierno medio

Climatología

- Variabilidad climática: El sist. climático se repite con distintos ciclos:
 - diurno: noche/día cada 24 horas
 - estacional: 4 estaciones / año
 - Pero estos ciclos no son exactamente iguales respecto al anterior


- Fenómenos extremos: eventos distintos al comportamiento medio.
 - ¿Cuanto de 'raro' es respecto a los extremos anteriores?
 - ¿Es más fuerte y frecuente debido al cambio climático?



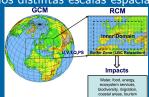

• El modelado numérico quiere describir **numéricamente** el sist. climático

- El modelado numérico quiere describir numéricamente el sist. climático
- Modelos dinámicos:
 - Discretizacion espacio/temporal de las ecuaciones que describen su dinámica

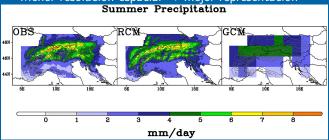
Charnay, Benjamin. (2014)

L. Fita

- Basados en leyes f

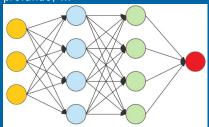

 sicas
- Resuelven las ecuaciones de Navier-Stokes en 3D de las componentes climáticas

- El modelado numérico quiere describir numéricamente el sist.
 climático
- Modelos dinámicos:
 - Dinámica / Física (distintas complejidades)



• Modelos distintas escalas espaciales: Globales, regionales, ...

- El modelado numérico quiere describir numéricamente el sist. climático
- Modelos dinámicos:
 - Grandes necesidades de cálculo y almacenaje
 - Menor resolución espacial → mejor representación



- F. Giorgi, (2019)
- Menor resolución espacial mayores costes computacionales
- Útiles para entender los procesos climáticos

- El modelado numérico quiere describir numéricamente el sist.
 climático
- Modelos estadísticos:
 - Basados en relaciones matematico-estadísticas
 - Estiman relaciones entre variables físicas del sist. climático entrenado con datos previos
 - Menor necesidades de cálculo (una vez 'entrenados')

 Nuevos paradigmas: Int. Art., redes neuronales, conocimiento profundo, ...

- El modelado numérico quiere describir numéricamente el sist.
 climático
- Buen modelo: representa valores medios, extremos y captura variabilidad climática
 - Simulaciones por periodos temporales largos (≥ 30 años)
 - Conjunto de simulaciones con múltiples modelos distintos: captura robusta variabilidad
 - \circ Mejor resultados resolución más fina (actualidad < 5 km)

¿Conjunto simulaciones baja resolución vs

Única simulación a alta resolución?

• El estudio del clima requiere de datos por un largo periodo de tiempo ($\simeq 20/30$ años)

- El estudio del clima requiere de datos por un largo periodo de tiempo ($\simeq 20/30$ años)
- observaciones: Las distintas bases de datos dependen del sensor

- El estudio del clima requiere de datos por un largo periodo de tiempo (≈ 20/30 años)
- observaciones: Las distintas bases de datos dependen del sensor
 - Superficie: valores 'puntuales' 0D, series muy largas (> 50 años), poca densidad, baja frecuencia
 - Sondeos: valores 1D, series cortas, bajísima densidad, muy baja frecuencia
 - <u>Sensores remotos</u>: valores 2D/3D, series cortas (desde 1982), varias frecuencias (10' a 12 horas, 1 cada 15 días), alta res. espacial
 - Regrillados: combinación de datos puntuales para generar datos 2D

- El estudio del clima requiere de datos por un largo periodo de tiempo (≈ 20/30 años)
- observaciones: Las distintas bases de datos dependen del sensor
- Modelos: Datos continuos en todo el espacio y tiempo:

- observaciones: Las distintas bases de datos dependen del sensor
- Modelos: Datos continuos en todo el espacio y tiempo:
 - Dinámicos
 - CMIP: Datos de modelos climáticos globales, múltiples periodos / escenarios, múltiples modelos, baja resolución (0.5 a 2.5°)
 - CORDEX: Datos de modelos climáticos regionales, pocos periodos / escenarios, pocos modelos, mayor resolución (25 a 50 km)
 - NCAR-SAAG: Datos 1 modelo climático regional (WRF) 2000-2021 clima presente y 'futuro' toda América del Sur a 4 km resolución
 - Estadísticos
 - Datos múltiples fuentes de múltiples generaciones puntuales o
 2D por múltiples periodos de tiempo

- El estudio del clima requiere de datos por un largo periodo de tiempo (≈ 20/30 años)
- observaciones: Las distintas bases de datos dependen del sensor
- Modelos: Datos continuos en todo el espacio y tiempo:
- Los datos de modelado pueden ser corregidos de sus errores utilizando las observaciones como referencia

- El estudio del clima requiere de datos por un largo periodo de tiempo (≈ 20/30 años)
- observaciones: Las distintas bases de datos dependen del sensor
- Modelos: Datos continuos en todo el espacio y tiempo:
- Los datos de modelado pueden ser corregidos de sus errores utilizando las observaciones como referencia
- Los tamaños de los datos no son menores:
 - CMIP $6 \simeq 30 \text{ PTB} (1 \text{ PTB} = 1000 \text{ PB} = 1,000.000 \text{ GB})$
 - Generación diaria de datos NASA: 100 TB / día
 - 30 años toda América del Sur a 20 km: 40 TB
 - ¡ Se hace necesaria una coordinación centralizada del almacenamiento / análisis de datos !

¡ Gracias por su atención !

