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A forecasting system based on numerical weather prediction models
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Data assimilation

A method to combine observations and forecasts in order to obtain 

an optimal estimation of the state of a system (i.e. the atmosphere).

This estimation should be as consistent as possible with model 

dynamics (i.e. balance in large scale data assimilation)



The data assimilation cycle
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Observations are used to correct the short range forecast so it can be used to 

initialize the next forecast.



Why do we use a short range forecast?
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•As long as the forecast came from a good model it should provide a good “first guess” of the 

state of the atmosphere (at least most of the time)

•The forecast keeps the information from the observations that has been previously 

assimilated

•The forecast dynamically “transport” the information provided by the observations 

(sometimes from areas with a lot of data to areas with almost no data)

•Forecasted fields are dynamically, physically and numerically consistent with the model 

equations

•Helps with the quality control of the observations



Step one: Generate a short range forecast
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This step is not different from running a forecast.

Start from the previous step analysis and run the model until you reach the time of the next 

assimilation cycle (usually run it  a little longer to incorporate more observations)

The assimilation frequency depends on the scale of interest. At smaller scales forecast error 

grows faster so in order to keep short range forecast “good” we have to correct them more 

frequently.  At synoptic timescales, the typical time would be ~6 hs, while for nowcasting we 

should consider doing it more often (~15 minutes and 1 hour)



Step two: Compare the short range forecast and the observations 
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The difference between the forecast and the observations is called the innovation.

•Model output is interpolated to the observation’s position.  Observed quantities are derived 

from model variables (i.e. satellite radiance is derived from temperature and moisture fields)

•Quality control based on forecast-observations comparison. Discard observations that respond 

to features that cannot be resolved by the model. 



Example: 900 hPa wind, geopotential and moisture short range forecast

•Observation (red dot). Wind from the 

north at 12 m/s.

•Interpolate model forecast to observation 

location and compare model forecast with 

observation (interpolation can be in space 

and time)

•Observation  has a northerly wind 2 m/s 

stronger than the forecast.

•Quality control says that observation is 

good because both the forecast and the 

observations have winds from the same 

direction and at a similar speed.

•This has to be done with all available 

observations…

How can we correct the forecast using the information provided by the observation?

Is the observation the truth? Is the forecast the truth? How far are the forecast and the 

observation from the truth?



Step three: Objective analysis procedure (how to actually combine forecasts and 

observations) 
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In this step short range forecasts and observations are combined with each other.

Information provided by each source is weighted according to their error



Error sources
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Errors in the forecast:

• Due to errors in the previous initial condition

• Model error

Error in the observations:

• Instrument error 

• Location error

Combination errors:

• Interpolation errors

• Error in variable transformation (i.e. 

from model temperature to radiance)

• Representativeness errors (scales 

not resolved by the model, but 

present  in the observations)



Data assimilation requires some knowledge about forecast 

errors and observation errors

Both are difficult to estimate!!  
•If the observation error is small compared 

to the forecast error then data assimilation 

will introduce a bigger correction to the 

forecast 

•If the observation error is bigger, then the 

correction will be smaller (we will trust the 

forecast more)forecast more)

•So far we have a comparison between 

forecast and observation at the 

observation’s location

•How can we correct the forecast at nearby 

grid points?

•Can we correct variables other than wind?



Data assimilation requires some knowledge about forecast errors and observation errors

We need to know the relationship between errors in different model variables

Are errors at different grid points related to each other?

•Errors at grid points that are close to each other 

are usually highly correlated

•We can use this information to “spread” the 

correction introduced by the observation in the 

horizontal and vertical directions

•In this example the observation suggests 

introducing an increase in wind speed. This 

increase is applied to all the grid points that are 

close to the observation

•How far should we “spread” the information 

provided by the observation? It depends on the 

observation type and the scales resolved by the 

model



Data assimilation requires some knowledge about forecast errors and observation errors

What about other model variables. Can we correct geopotential field using wind observations?

•Error relationships between model 

variables also include error relationship 

among different variables. (i.e. geostrophic

balance)

•The wind observation in this case provides 

also information about how to correct 

geopotential height so that the correction is 

approximately in geostrophic balance.approximately in geostrophic balance.

•This relationships among variables depends 

on location (i.e. tropics vs mid latitudes) and 

scale (synoptic vs convective scales).

•In this case we are introducing a large scale 

correction at mid latitudes. To keep 

geostrophic balance we have to increase 

geopotential heights to the  east and reduce 

it to the west.

What can we say about the moisture field?



State dependent corrections

The shape of optimal corrections may be state dependent.  Also the relationship among errors 

in different variables might depend on the flow state.

Fixed State dependent



Summary and example with several observations

Comet Program.



Step four: Apply the correction and generate the initial condition for the next cycle
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Add the correction to the short range forecast to obtain the analysis

Repeat steps one to four again for the next assimilation cycle



3DVAR:

Defines the analysis as the state (x) at time t that produce the minimum of the 

following cost function:

Distance to short range forecast Distance to observationsDistance to short range forecast Distance to observations

Pb is the forecast error covariance matrix (has information about covariance between errors at 

different grid points or between different variables.

R is the observation error covariance matrix (has the information about the errors in the 

observations and also includes representativity errors)

H is a function that transforms the model variables into the observed variables (interpolation, 

variable transformation)

The analysis is found using highly efficient minimization techniques



4DVAR:

Defines the analysis as the state (x) at time t-1 that produce the minimum of the 

following cost function:

Observations are compared with forecast within a time windowObservations are compared with forecast within a time window

The analysis (the minimum of the cost function) is computed at the beginning of the time 

window.

4DVAR finds the initial conditions that produce a model trajectory that best fits the observations 

within the time window.

Gk transforms the state x at the beginning of the time window to the observations at different 

times (the model is used here to evolve the initial condition up to the time of the observations)

Minimization is more difficult in 4DVAR because efficient minimization algorithms requires the 

adjoint of the model equations


