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AIN CHALLENGES FOIR
GOOD NUMERICAL

FORECAST

* Quality of the forecast system (this includes
both the Numerical Model and the
Assimilation System)

« Quality (and quantity) of the observations

Forecast errors
and
Forecast
Uncertainty
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“Why have meteorologists such difficulty in
predicting the weather with any certainty? Why
s It that showers and even storms seem to come
by chance ... a tenth of a degree (C) more or
less at any given point, and the cyclone will
burst here and not there, and extend its ravages
over districts that it would otherwise have
spared. If (the meteorologists) had been aware
of this tenth of a degree, they could have
known (about the cyclone) beforehand, but
the observations were neither sufficiently
comprehensive nor sufficiently precise, and that
Is the reason why It all seems due to the
iIntervention of chance”

Poincaré, 1909
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GOING A LITTLE DEEPER IN
OUR UNDERTSTANDING OF
ATMOSPHERIC PREDICTABILITY

 In his 1951 paper on NWP, Charney indicated that he
expected that even as models improved, there
would still be a limited range to skillful atmospheric
predictions, but he attributed this to inevitable model
deficiencies and finite errors in the initial conditions

 In a series of remarkable papers, Lorenz (1963a,
1963b, 1965, 1968) made the fundamental discovery
that even with perfect models and perfect
observations, the chaotic nature of the atmosphere
would impose a finite limit of about two weeks to the
predictability of the weather.
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GOING A LITTLE DEEPER IN
OUR UNDERTSTANDING OF
ATMOSPHERIC
PREDICTABILITY

Weather forecasts lose skill because of:
 the growth of errors in the initial conditions
(initial uncertainties)
« numerical models describe the laws of

physics only approximately (model
uncertainties).

As a further complication, predictabillity (i.e.
error growth) is flow dependent.
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"THE FUNDAMENTAL THEOREM
OF PREDICTABILITY (.orenz,1963a, 19638)

« Unstable systems have a finite limit of predictability,
and conversely, stable systems are infinitely
predictable (since they are either stationary or
periodic)

Unstable System Stable System

iiijy TRUT

pig— FORECAST

FORECAST
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ILLUSTRATING CHAOTIC
FLOWS

LORENZ 3-D MODEL

d_r 40 -
—=0(y—x)
dt z
d 10 -
dy = IX—y—Xz

f 0.l

Y Es

dz 2 warm ° e
—_— — xy - Z ) o e
dt Jold o °

* This model could mimic our interest of
forecasting when are we going to move from a
“warm” phase to a “cold phase”
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A SMALL CHANGE IN THE INITIAL
CONDITION...

: : £ According to Lorenz, 2006,
] + 11 | deterministic Chaos can
be thought as:

warm

“WHEN THE PRESENT

DETERMINES

THE FUTURE

BUT

P o THE APPROXIMATE

i PRESENT DOES NOT

o 500 1000 15'(:;:"“E mn;ﬂbﬂ 2500 3000 =0 APPROXIMATELY
DETERMINE THE FUTURE™

Cold
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THE ERRORS OF THE DAY

Cold warm
O%n
G% 0

5

=

\

* A set of sli%?tly different initial conditions is used to

represent
e From each Initia

e uncertainty in the initial conditions

condition we obtain different

“future states”: we can get an idea of the
forecast uncertainty.

* This uncertainty depends on the flow
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ECMWF ensemble forecast - Air temperature

N EXAMPLE IN m e et s e
THE ATMOSPHERE

L)

« ECMWEF Surface Temp. g L S
ForeCaStS for London On Forecast day

ECMWF ensemble forecast - Air temperature

2 dlfferent Summer days Date: 26/06/1994 London Lat: 51.5 Long: 0

Control = Analysis

S ]

Degree C

-
00 -
(D)~
o

Ensemble

Degree C

Forecast day
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AN EN SE MBLE deterministic ~ stochastic
PREDICTION SYSTEM . :
(E PS] Temperature Temperature

fc.
A more complete ‘ >

description of a future state

can be derived from the PDF

of this state. Ensemble

forecasts are used to

represent the PDF of these

future states.

Our forecast will provide the
probabillity of occurrence of

a given event PDE@O

fc,

PDF(t)

reali >

f

|\
D)

Forecast time
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ENSEMBLE FORECASTS AS AN
ALTERNATIVE TO QUANTIFY
UNCERTAINTY

Error and Uncertainty Growth with Time

|
¢ Forecast

Uncertainty

2 ¢ Forecast

= Error

£ |— Ensemble Mbr f”f

% )

e

% —— Verification

= Range of
Outcomes

0 122;13543 60 72 84 96 108 120
Forecast Lead Time
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CONCEPTUALLY

e Running an EPS gives us a sample of possible
forecasts from a much greater population of
forecast possiblilities. From this sample, we can then
draw inferences about the central tendency
("middleness"), variability, and shape of the
distribution for the population of all potential
forecast outcomes

« However, we still have statistical caveats: it is
possible that the ensemble forecast data set (i.e.,
the data sample) is not representative of all
possible forecast outcomes
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GOOD ENSEMBLES Vs.
BAD ENSEMBLES

POSITIVE

PERTHREATION Bad ensemble

Good ensemble

CONTROL

~. AVERAGE

TRUTH

NEGATIVE
PERTURBATION
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OOD ENSEMBLES THROUGH:
SHOULD: |
* Represent initial « Good sampling of
conditions different initial states
uncertainty « Stochastic physics or
* Represent model multi model
uncertainty ensemble
* Represent « Perturbed boundary
boundary conditions (could
conditions refer to land-ocean
uncertainty

or lateral boundaries)
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 Ensemble technique is
well established at 4
synoptic-scale, but

perturbations) will grow at
the same rate is valid at
synoptic scales
(baroclinic instabillity)

suitable for convection-

resolving scales? =12
eg. selective sampling: =T
the idea that not all the
initial errors (e.qg. .

"ENSEMBLE GENERATION
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WHAT CAN ENSEMBLES
PROVIDE?

« Middleness and spread (to assess, on average, the
most likely outcome and uncertainty in the forecast)

« Probability distribution of ensemble forecasts (to
assess the usefulness of the above two measures)

* Probability of exceeding critical thresholds (to assess
the need for watches, warnings, etc.)

e |t is highly desirable that ensemble spread could
represent forecast error (e.g. being able to forecast
“forecast skill”’)

Probabilistic forecasts
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PROBABILISTIC FORECASTS
ARE NOT NEW....

Before having NWP-EPS, forecasters used:

e Local climatology to assess likely future value of
forecast variables

e Current values for meteorological variables in
making the forecast (persistence)

* Past evolution of the atmosphere in similar
situations (forecast analogues)
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PROBABILISTIC FORECASTS

DERIVED FROM SINGLE NWP

Hypothetical Histogram of.JuIy 850 hPa Temperarures
Eta 24-hr Fo| 5. Analysis

Histogram of 850 hPa 24-hr Forecast Temperature Errors
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Slgma =2.9 ©The COMET Program Slgma =0.8 @©The COMET Program

It turns out that the mean for the analysis sample is 14.6°C with
a standard deviation of 2.9°C. The 24-hour forecasts, however,
have a mean of 15.1°C with (for simplicity) the same standard

deviation.
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= s SOME DISADVANTAGES -
OF THESE METHODS

« Relationships between model forecasts and the
subsequent verification are often flow regime
dependent, which means that application of these
relationships in at least some cases will not be valid.

 We also do not get a quantitative sense of how
predictable the flow regime might be.

!

ENSEMBLE FORECASTS BECOME A GOOD
ALTERNATIVE TO OVERCOME THESE PROBLEMS
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WHAT DO ENSEMBLES
TAKE INTO ACCOUNT?

e Current initial condition uncertainty and
atmospheric predictability

« Current flow regime effect on NWP model
predictability and bias

 Current model configuration (i.e. previous
versions of the NWP model may have different
characteristic errors and biases)
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HOW TO USE PRODUCTS
OBTAINED FROM EPS

For several practical, traditional and
psychological reasons categorical
(single- value) forecasts are the most
requested from the end-users.

 Deterministic statement like the mean (the best
estimate), the most likely and the median can easily be

extracted from probability distributions.

 The ensemble mean is obtained by averaging all
ensemble forecasts. This has the effect of filtering out
features of the forecast that are less predictable.
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THE ENSEMBLE MEAN

 beyond the short range,
exhibits higher accuracy

than the Control for “dry”

fields (with low spread)

 Higher degree of day-to-

day consistency

e Less jumpiness (because
of filtering smaller scales
features)

 do not constitute

genuine, dynamically
three-dimensional
representations of the
atmosphere, so it can
show Inconsistencies
between different fields

* |s less able to represent

extreme or anomalous
weather events (unless
they appear in most of
the ensemble members)
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ENSEMBLE SPREAD -

 The ensemble spread is a measure of the
difference between the members and is
represented by the standard deviation (Std) with
respect to the EM.

« On average, small spread indicates a high a priori
forecast accuracy and large spread a low a priori
forecast accuracy

POSITIVE

PERTURBATION

Good ensemble Bad ensemble

CONTROL

~
* TRUTH

NEGATIVE
PERTURBATION
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Sunday 4 August 2013 12UTC ECMWF Forecast t+24 WT: Monday § August 2013 12UTGC Sunday 4 August 2013 12UTC ECMWF Forecast t+24 VT: Monday 5 August 2013 12UTC

LP) Deterministic Forecast and Standard Deviation (shaded)

Mean sea level pressure (MSLP) Ensemble Mean and Mormalised Standard Deviation {shaded) Mean sea level pressure (MS
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Sunday 4 August 2012 12UTC ECMWF Forecast t+120 VT: Friday @ August 2013 12UTC
Mean sea level pressure (MSLP) Ensemble Mean and Mormalised Standard Deviation {shaded)
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Sunday 4 August 2013 12UTC ECMWF Forecast t+120 VT Friday 9 August 2013 12LTC
Mean sea level pressure (MSLP) Deterministic Forcast and Standard Deviation (shaded)
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Sunday 4 August 20123 12UTC ECMWEF Forecast t+216 WT: Tuesday 13 August 20123 12UTC

}’ b . ™

Mean sea level pressure (MSLP) Ensemble Mean and Mormalised Standard Deviation (shaded)
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Sunday 4 August 2012 12UTC ECMWF Forecast ++218 VT: Tuesday 12 August 2012 120TC

lean sea

level pressure (MSLP) Deterministic Forecast and Standard Deviation {shaded)

- n]‘up: \—r/ . StDev
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Example from
CHUVA

Matsudo et al.,
2013

ENS MEAN (shaded) and SPREAD (cont)
24hr_rainfall (mm) forecast valid for 12Z04DEC2012
initialized on 12Z03DEC2012
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Temperature

T-NOTE

ETTING MORE INFORMATION

FROM THE EPS:
MOVING INTO PROBABILITIES

g0% e

max
[ 20 m
median (50% )

— 2/__/ l 15 m
= ————— -
l l 10 m
om
d
20 members K 10%
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EXAMPLES
AT THE SYNOPTIC SCALE
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SYNTHESIZING THE
INFORMATION FROM AN EPS

City of London
Five day maximum temperature range

Max temp range Min temp range

25 o Key:

i7 °C

23 %C
Most likely |

21 =C

Exa

15 =C
13 °C
i1 =C

Sun 4 Aug Mon 5 Aug Tue & Aug Wed 7 Aug Thu 8 Aug

Issued at: 2200 on Sun 4 Aug 2013
City of London site information:
Select the 'Max temp range’ or 'Min temp range’ tab to view the range and "'most likely' daily maximum aor Location: 51.510, -0.084
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Rainfall Forecasts ~

W Chance of any rain

X’ (%)
3-hourly . v M s0-100
© Chance of any rain M 7s5-90
0 Expected rainfall - = 0-75

. { C 25 -50
Daily from tomorrow ' 10 =25
@ Chance of any rain : ‘: Clo-10

Updated 5 Aug 2013, 7:01 AM AEST no data

© Likely rainfall
(@ Possible higher rainfall

Clear Info

Overlay

Latest rain radar

Temperature Forecasts
Storms, Snow, Fog, Frost ..
Humidity Forecasts

Wind Forecasts

¢ € € ¢ (£

Waves Forecasts
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FORECASTS
J-hourly

@) Chance of any rain
) Expected rainfall

Daily from tomorrow
@) Chance of any rain
@ Likely rainfall
Updated 5 Aug 2013, 7:01 AM AEST

©) Possible higher rainfall
Clear Info

Overlay

=1 o
11 Latestrain radar

Storms, Snow, Fog, Frost ...
Humidity Forecasts

IR R

Rainfall (mm)

W zo0+

B 150- 200

B 100-150

M s0-100

M 5-50

M 15-25
18-15

Hs5-10

Hi-5s

| B p=1

W no data
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Probabilidad para el urmbral Bmm. Valido para 2013080412
T \ T —— | T T
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Centro de

Investigaciones del =
Mary la Atmosfera S
Experimental ]
Probabilistic L
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B B ABILITY PLUMES = CLOBAL ENSEW NHLE FORECAST - - TQ0126L028 ‘
S CPTEC:  048:45W—21:585 BAURU (SP)

;__ng-__-_HhUGEGIS 00Z: Gresnwhich Meridian Time: Vertical Dotted Line: Midnight

B - B o= 40 — B0 % 60 — 50 %= [ME] — 100 % 41

Madal &tituda: 555 m Control Forecost
Ensemble Membars of Precipitation (mm/h)
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Surface Temperature (*C) — Probability for 1.0 deg intervals
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Relative Humidity {%) — Probakility for 3.0% intervals
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Surface Wind (m/s) — Probability for 2.0 m/s intervals

1 'iﬁ.l]l.‘“ 1 “:AUG 780G 1894115 P1ALG P3ALG
Surface Pressure (hPa) — Probability for 3.0 hPa intervals

9E5
=]
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930
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designhed to handle the problem of
uncertainty at the synoptic scales.

e It filters out “unpredictable” short scales

o [t states that the problem can be
treated in a deterministic way for the
first hours (even 3 or more days in
advance)

BUT...
¢ CAN WE THINK IN THIS WAY IF WE ARE
DOING NOWCASTING?
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SOME FACTS

e Experimental studies (e.g., Honegger and Schar
2007, Leoncini, 2010) show that error growth
saturation time at convective-scales (2.2 km and
4 km horizontal resolution) is of the order of one
day, with error doubling time of the order of a
few hours.

e Similar studies with the ECMWEF EPS (1255, 80 km)
iIndicate instead an error saturation time of the
order of 10 days, with error doubling time of the
order of a few days.
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WHAT IS IMPORTANT AT
CONVECTIVE SCALES?

 Presumably, uncertainty due to model parameterizations
IS a key component of model error at these scales.
Synoptic scale uncertainty (provided with BC) are also a
source of error. Ensembiles system should capture this..
 What is known about predictability at convective scale:
« Small errors grow faster (non-linear behavior).

* Errors amplify faster in high-resolution convection-
resolving simulations.

* Moist convection is the primary mechanism for
forecast error growth at small scales.

« Mesoscale data assimilation can lead to improved
and more realistic forecasts
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ENSEMBLE FORECASTING
AT CONVECTIVE SCALES

e Is at its early stage

 Needs further research in order to create proper
optimal perturbations

 Is largely benefited from assimilating very high resolution
data (e.g. reflectivity, doppler winds, cloud properties)

e Linear assumptions, used by some assimilation
techniques, may not hold

e The large sensitivities to initial conditions and to model|
error motivates the need for probabillistic forecasts at
convective scale
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EXAMPLE

* Impact of the Environmental Low-Level Wind Profile on
Ensemble Forecasts of the 4 May 2007 Greensburg,
Kansas, Tornadic Storm and Associated Mesocyclones
DANIEL T. DAWSON Il et al, 2012

e« COMMAS Hi-res model
« Homogeneous initialization (radiosonde)
1 km horizontal resolution, 50 vertical levels, 140x160 km

30 members ensemble (EnKF) generated using random
horizontal wind perturbations, with extra perturbation
added over the regions with large reflectivity
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L ==>THE GREENSBURG STORM

 The Greensburg storm itself first developed after a
long series of cell splits and mergers near the
Oklahoma—-Kansas border between 0013 and
0038 UTC 5 May 2007, and first became tornadic
around 0132 UTC.

* The storm produced at least four small and
relatively short-lived tornadoes (rated EFO-EF1)
before producing its first significant long-track
tornado.

 The Greensburg tornado (was rated EF5) began
at approximately 0200 UTC, struck the town of
Greensburg just after 0245 UTC, and finally
dissipated at approximately 0300 UTC (LUO08). The
Greensburg tornado had a mean path width of
approximately 2.0 km
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RNV IV LRI,
120+ E/ e , ‘; :/ X J/ i }/ A ;} ?
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B
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F1G. 6. Individual 0-1-h vorticity swaths for the first 28 (of 30) ensemble members of experiment V020010200. For
reference, overlaid in each are the tracks of the Greensburg tornado, as well as the two subsequent large tornadoes
from the storm. The location of Greensburg, KS, is denoted by the yellow star. The scale is indicated in km in the

lower left. Only a portion of the full model domain is shown.
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REMAINING ISSUES

e Calibration

e Verification
e Assimilation

 Operational implementation: strategies to run a
convective scale EPS
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MOGREPS: Met Office Global and

Generating a convective Rregionsl Ensemble Prediction System
scale forecast ensemble i

* MOGREPS-G (60 km) — operational
* MOGREPS-R (18 km) — operational

* ETKF-1.5 km - research

southern UK domain

e Control and 23 ensemble members with

432 km

perturbed initial conditions
e Hourly cycling =y 2
e Convection-permitting ' | 1
¢ | BCs and IC perturbations from MOGREPS-R ! ‘___’
* Grid-point based NWP model | 540 krﬁ
* 70 vertical levels Rudd et al 2012
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