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MAIN CHALLENGES FOR A 
GOOD NUMERICAL 

FORECAST
• Quality of the forecast system (this includes 

both the Numerical Model and the 
Assimilation System)

• Quality (and quantity) of the observations
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Forecast errors
and 

Forecast
Uncertainty



“Why have meteorologists such difficulty in 
predicting the weather with any certainty? Why 
is it that showers and even storms seem to come 
by chance ... a tenth of a degree (C) more or 
less at any given point, and the cyclone will 
burst here and not there, and extend its ravages 
over districts that it would otherwise have 
spared. If (the meteorologists) had been aware 
of this tenth of a degree, they could have 
known (about the cyclone)   beforehand, but 
the observations were neither sufficiently 
comprehensive nor sufficiently precise, and that 
is the reason why it all seems due to the 
intervention of chance”

Poincaré, 1909
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GOING A LITTLE DEEPER IN 
OUR UNDERTSTANDING OF 

ATMOSPHERIC PREDICTABILITY
• In his 1951 paper on NWP, Charney indicated that he 

expected that even as models improved, there 
would still be a limited range to skillful atmospheric 
predictions, but he attributed this to inevitable model 
deficiencies and finite errors in the initial conditions 

• In a series of remarkable papers, Lorenz (1963a, 
1963b, 1965, 1968) made the fundamental discovery 
that even with perfect models and perfect 
observations, the chaotic nature of the atmosphere 
would impose a finite limit of about two weeks to the 
predictability of the weather. 
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GOING A LITTLE DEEPER IN 
OUR UNDERTSTANDING OF 

ATMOSPHERIC
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Weather forecasts lose skill because of:
• the growth of errors in the initial conditions 

(initial uncertainties) 
• numerical models describe the laws of 

physics only approximately (model 
uncertainties). 

As a further complication, predictability (i.e. 
error growth) is flow dependent. 
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THE FUNDAMENTAL THEOREM 
OF PREDICTABILITY(LORENZ,1963A,  1963B)

• Unstable systems have a finite limit of predictability, 
and conversely, stable systems are infinitely 
predictable (since they are either stationary or 
periodic)

Unstable System Stable System
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ILLUSTRATING CHAOTIC
FLOWS

LORENZ 3-D MODEL

• This model could mimic our interest of 
forecasting when are we going to move from a 
“warm” phase to a “cold phase”
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A SMALL CHANGE IN THE INITIAL
CONDITION…
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“WHEN THE PRESENT 
DETERMINES
THE FUTURE  
BUT
THE APPROXIMATE 
PRESENT DOES NOT
APPROXIMATELY 
DETERMINE THE FUTURE”

According to Lorenz, 2006, 
deterministic Chaos can 
be thought as:
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THE ERRORS OF THE DAY

• A set of slightly different initial conditions is used to
represent the uncertainty in the initial conditions

• From each initial condition we obtain different
“future states”: we can get an idea of the
forecast uncertainty.

• This uncertainty depends on the flow
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Cold warm



AN EXAMPLE IN 
THE ATMOSPHERE

• ECMWF Surface Temp. 
Forecasts for London on
2 different summer days
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AN ENSEMBLE
PREDICTION SYSTEM

(EPS)
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A more complete 
description of a future state
can be derived from the PDF 
of this state. Ensemble
forecasts are used to
represent the PDF of these
future states.
Our forecast will provide the
probability of occurrence of 
a given event

deterministic stochastic



ENSEMBLE FORECASTS AS AN
ALTERNATIVE TO QUANTIFY

UNCERTAINTY
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CONCEPTUALLY

• Running an EPS gives us a sample of possible 
forecasts from a much greater population of 
forecast possibilities. From this sample, we can then 
draw inferences about the central tendency 
("middleness"), variability, and shape of the 
distribution for the population of all potential 
forecast outcomes

• However, we still have statistical caveats: it is 
possible that the ensemble forecast data set (i.e., 
the data sample) is not representative of all 
possible forecast outcomes 
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GOOD ENSEMBLES VS. 
BAD ENSEMBLES
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GOOD ENSEMBLES 
SHOULD:

• Represent initial
conditions
uncertainty

• Represent model
uncertainty

• Represent
boundary
conditions
uncertainty

• Good sampling of 
different initial states

• Stochastic physics or
multi model
ensemble

• Perturbed boundary
conditions (could
refer to land-ocean
or lateral boundaries)
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THROUGH:



ENSEMBLE GENERATION
• Ensemble technique is

well established at 
synoptic-scale, but
suitable for convection-
resolving scales?

eg. selective sampling: 
the idea that not all the
initial errors (e.g. 
perturbations) will grow at 
the same rate is valid at 
synoptic scales
(baroclinic instability)
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WHAT CAN ENSEMBLES
PROVIDE?
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• Middleness and spread (to assess, on average, the 
most likely outcome and uncertainty in the forecast)

• Probability distribution of ensemble forecasts (to 
assess the usefulness of the above two measures)

• Probability of exceeding critical thresholds (to assess 
the need for watches, warnings, etc.)

• It is highly desirable that ensemble spread could 
represent forecast error (e.g. being able to forecast 
“forecast skill”)

Probabilistic forecasts
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PROBABILISTIC FORECASTS
ARE NOT NEW….

Before having NWP-EPS, forecasters used:

• Local climatology to assess likely future value of 
forecast variables

• Current values for meteorological variables in 
making the forecast (persistence)

• Past evolution of the atmosphere in similar 
situations (forecast analogues) 
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PROBABILISTIC FORECASTS
DERIVED FROM SINGLE NWP
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It turns out that the mean for the analysis sample is 14.6°C with 
a standard deviation of 2.9°C. The 24-hour forecasts, however, 
have a mean of 15.1°C with (for simplicity) the same standard 
deviation. 

Sigma =2.9 Sigma =0.8



SOME DISADVANTAGES
OF THESE METHODS

• Relationships between model forecasts and the 
subsequent verification are often flow regime 
dependent, which means that application of these 
relationships in at least some cases will not be valid. 

• We also do not get a quantitative sense of how 
predictable the flow regime might be. 

T-NOTE – Buenos Aires, 5-16 August 2013 – Celeste Saulo and Juan Ruiz

25

ENSEMBLE FORECASTS BECOME A GOOD 
ALTERNATIVE TO OVERCOME THESE PROBLEMS



WHAT DO ENSEMBLES
TAKE INTO ACCOUNT?

• Current initial condition uncertainty and 
atmospheric predictability

• Current flow regime effect on NWP model 
predictability and bias

• Current model configuration (i.e. previous 
versions of the NWP model may have different 
characteristic errors and biases)
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HOW TO USE PRODUCTS
OBTAINED FROM EPS

• Deterministic statement like the mean (the best 
estimate), the most likely and the median can easily be 
extracted from probability distributions. 

• The ensemble mean is obtained by averaging all 
ensemble forecasts. This has the effect of filtering out 
features of the forecast that are less predictable.
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For several practical, traditional and 
psychological reasons categorical 

(single- value) forecasts are the most 
requested from the end-users. 



PROS AND CONS OF USING
THE ENSEMBLE MEAN

• beyond the short range, 
exhibits higher accuracy 
than the Control for “dry” 
fields (with low spread)

• Higher degree of day-to-
day consistency

• Less jumpiness (because 
of filtering smaller scales 
features)

• do not constitute 
genuine, dynamically 
three-dimensional 
representations of the 
atmosphere, so it can 
show inconsistencies 
between different fields

• Is less able to represent 
extreme or anomalous 
weather events (unless 
they appear in most of 
the ensemble members)
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ENSEMBLE SPREAD

• The ensemble spread is a measure of the 
difference between the members and is 
represented by the standard deviation (Std) with 
respect to the EM. 

• On average, small spread indicates a high a priori 
forecast accuracy and large spread a low a priori 
forecast accuracy
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Matsudo et al., 
2013

Example from
CHUVA



T-NOTE – Buenos Aires, 5-16 August 2013 – Celeste Saulo and Juan Ruiz

34

Matsudo et al., 
2013

Example from
CHUVA
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GETTING MORE INFORMATION
FROM THE EPS:

MOVING INTO PROBABILITIES
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20 members
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EXAMPLES
AT THE SYNOPTIC SCALE
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SYNTHESIZING THE 
INFORMATION FROM AN EPS
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Centro de 
Investigaciones del 
Mar y la Atmósfera
Experimental 
Probabilistic
Forecasts
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BUT…
¿CAN WE THINK IN THIS WAY IF WE ARE 

DOING NOWCASTING?

• The theory underlying EPS has been
designed to handle the problem of 
uncertainty at the synoptic scales. 

• It filters out “unpredictable” short scales
• It states that the problem can be 

treated in a deterministic way for the
first hours (even 3 or more days in 
advance)
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SOME FACTS

• Experimental studies (e.g., Honegger and Schar
2007, Leoncini, 2010) show that error growth 
saturation time at convective-scales (2.2 km and 
4 km horizontal resolution) is of the order of one 
day, with error doubling time of the order of a 
few hours.

• Similar studies with the ECMWF EPS (T255,  80 km) 
indicate instead an error saturation time of the 
order of 10 days, with error doubling time of the 
order of a few days.
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Hohenegger and Schar, BAMS, 2007

ECMWF 
global 
model
(~80 km)

LM 
model
(~2.2 km)



WHAT IS IMPORTANT AT 
CONVECTIVE SCALES?

• Presumably, uncertainty due to model parameterizations 
is a key component of model error at these scales. 
Synoptic scale uncertainty (provided with BC) are also a 
source of error. Ensembles system should capture this..

• What is known about predictability at convective scale:
• Small errors grow faster (non-linear behavior).
• Errors amplify faster in high-resolution convection-

resolving simulations.
• Moist convection is the primary mechanism for 

forecast error growth at small scales.
• Mesoscale data assimilation can lead to improved 

and more realistic forecasts
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ENSEMBLE FORECASTING
AT CONVECTIVE SCALES

• Is at its early stage
• Needs further research in order to create proper

optimal perturbations
• Is largely benefited from assimilating very high resolution

data (e.g. reflectivity, doppler winds, cloud properties)
• Linear assumptions, used by some assimilation

techniques, may not hold
• The large sensitivities to initial conditions and to model 

error motivates the need for probabilistic forecasts at 
convective scale
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EXAMPLE
• Impact of the Environmental Low-Level Wind Profile on 

Ensemble Forecasts of the 4 May 2007 Greensburg, 
Kansas, Tornadic Storm and Associated Mesocyclones
DANIEL T. DAWSON II et al, 2012

• COMMAS Hi-res model
• Homogeneous initialization (radiosonde)
• 1 km horizontal resolution, 50 vertical levels, 140x160 km
• 30 members ensemble (EnKF) generated using random 

horizontal wind perturbations, with extra perturbation 
added over the regions with large reflectivity
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THE GREENSBURG STORM
• The Greensburg storm itself first developed after a 

long series of cell splits and mergers near the 
Oklahoma–Kansas border between 0013 and 
0038 UTC 5 May 2007, and first became tornadic
around 0132 UTC. 

• The storm produced at least four small and 
relatively short-lived tornadoes (rated EF0–EF1) 
before producing its first significant long-track 
tornado.

• The Greensburg tornado (was rated EF5) began 
at approximately 0200 UTC, struck the town of 
Greensburg just after 0245 UTC, and finally 
dissipated at approximately 0300 UTC (LU08). The 
Greensburg tornado had a mean path width of 
approximately 2.0 km
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Between 0130 
and 0315

Between 0145 
and 0315

Between 0200 
and 0315

VxxxxIyyyy: xxxx time 
of the hodograph
yyyy initial time



REMAINING ISSUES

• Calibration
• Verification
• Assimilation
• Operational implementation: strategies to run a 

convective scale EPS
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Rudd et al 2012
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