
Skill of Nowcasting of Precipitation by 
NWP and by Lagrangian Persistence

(where we chronicle a bridging of the gap )
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There were various attempts at improving precipitation 
nowcasting through addition of NWP:

Skill-weighted average of Lagrangian Persistence (LP) and NWP

Correction of positional errors (and more) of NWP

Selectively adding NWP-predicted growth and decay to LP

Correction of phase errors of NWP

(As a standalone or in combination with LP, 
with or without data assimilation; deterministic or ensemble NWP)
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Basic fact of life:  short scales are ephemeral 
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Basic fact of life:  Precipitation patterns have 
characteristics of pink noise
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Basic fact of life:  Precipitation patterns have 
characteristics of pink noise
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Nowcasting Skill of Model and of 
Lagrangian Persistence

The nowcast is improved when NWP nowcast and Lagrangian 
persistence nowcast are merged by a skill-weighted average.

However, there is no advantage in doing this adaptively: climatological skill is as 
good as the skill determined in a particular situation just prior to the nowcast.

Question: Why?

Possible answers:

Either model skill is not sufficiently persistent in time 
(ex: effect of diurnal cycle) 

or

the skill of model and of LP are correlated
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Scatterplots of CSI June to August 2005
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Scatterplots of CSI Jan. to March 2005

Monday, 12 August, 13



0 1 2 3 4 5 6

Lead time [h]

0.4

0.6

0.8

1.0

C
O

R
R

E
L
A

T
IO

N

Scatterplots of CSI Jan. to March 2005

Should we be asking 
why so much scatter?
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We acquired outputs of ensemble runs (OU, Ming Xue) to further 
experiment with NWP contributions to nowcasting.  The ensemble is 

generated by varying initial conditions and model physics.  

Radar data are assimilated in all members except c0 ; cn is identical 
to c0 except that radar data were assimilated

Ensemble mean is re-calibrated by probability matching, PM (making 
the pdf of intensity equal to the average pdf of members)
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We acquired outputs of ensemble runs (OU, Ming Xue) to further 
experiment with NWP contributions to nowcasting.  The ensemble is 

generated by varying initial conditions and model physics.  

Radar data are assimilated in all members except c0 ; cn is identical 
to c0 except that radar data were assimilated

Ensemble mean is re-calibrated by probability matching, PM (making 
the pdf of intensity equal to the average pdf of members)

Note: the POD of the ensemble mean (before PM) is smaller than one, 
indicating that the ensemble does not cover all observed precipitation)

Monday, 12 August, 13



NWP Ensembles (poor and best predictability cases)
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Diurnal cycle in NWP of rain
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Diurnal cycle in pdf of rain
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Models fail to correctly reproduce the diurnal cycle
Summer precipitation over this domain:
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Region of transport of diurnal cycle{ {
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The larger forecast errors of diurnal cycle happens 
where LP is longer !!
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The larger forecast errors of diurnal cycle happens 
where LP is longer !!
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Is this one of the reasons why 
the predictability by LP and 
NWP is not better correlated?
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Summary:  Model-LP comparison of precipitation
nowcasting

EPS mean is re-calibrated by PM

Note the diurnal cycle in the RMS error 
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Summary:  Model-LP comparison of precipitation
nowcasting

EPS mean is re-calibrated by PM

Note the diurnal cycle in the RMS error 
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NWP Ensembles (the best case)

OU & 4 km resolution Scores at 15 dBZ threshold
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Position distance between model and radar
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Nowcasting by correcting the model-radar distance

WRF Model           Corrected model                  Radar
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Nowcasting by correcting the model-radar distance

WRF Model           Corrected model                  Radar

15 dBZ
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Nowcasting by phase correction

average of 15 events
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Morphing model into radar by phase correction
(one wavelength at a time) 
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Morphing model into radar by phase correction
(one wavelength at a time) 
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Phase distance between model and radar
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     Phase distance between model and radar
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Defining growth and decay in radar
(a)                    00 UTC
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Lifetime of growth and decay
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Effect of model error due to resolution
Reflectivity (top) and Streamlines (bottom)
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Effect of model error due to resolution
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Effect of model error & data assimilation (average of 24 cases)
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Ensembles (EnKF) to the rescue? 
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Observations

Simulation using data assimilation (model as strong constraint) into a simple 
model of freely falling rain-shaft with a 2-parameter DSD representation.  Note 
that 3 parameters are needed to correctly describe the DSDs of falling drops.

Note a second shaft 
due to model error

Effect of model errors on assimilation

FROM:
Laroche, S., W. Szyrmer and I. Zawadzki, 2005: A 

microphysical bulk formulation based on scaling 
normalization. Part II: Data assimilation into physical 
processes. J. Atmos. Sci. 62, 4222-4247.
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Grey lines: ensemble members; Black line: average for all members; Red line: ensemble mean

Total variance bias
For some scales, ratio is constant.

After a certain threshold, ratio decreases towards 1.

The ensemble mean of precipitation forecasts
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Grey lines: ensemble members; Black line: average for all members; Red line: ensemble mean

Total variance bias
For some scales, ratio is constant.

After a certain threshold, ratio decreases towards 1.
WHAT IS THE MEANING OF THIS SPECTRAL STRUCTURE?

The ensemble mean of precipitation forecasts
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The spectral structure of 
precipitation fields for the OU 
ensemble shows:
• no agreement between 

members at scales smaller than 
some S0 

• At scales larger than S0, the 
ENM has the properties of a 
low-pass filter

• There is no perfect agreement 
between members at any 
scales, but the power ratio of 
members with respect to ENM 
approaches 1.

• The cutoff scale S0 is lead-time-
dependent.
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The ensemble mean of precipitation forecasts 
and scale dependence of NWP predictability 
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Conclusions 
The lifetime of scales below 100 km is SHORT

Monday, 12 August, 13



Conclusions 

At scales below 100 km NWP has no 
skill (when compared to radar)

The lifetime of scales below 100 km is SHORT
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Conclusions 

All tried corrections to forecast errors did not 
lead to nowcast better than LP (MAPLE)
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Present data assimilation does not seem to lead to nowcasts better than 
MAPLE but shortens the time of MAPLE’s advantage

The lifetime of scales below 100 km is SHORT

Uncertainties in LP nowcast (not discussed here) are handled 
by pure statistical ensembling; some physics is in order
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Conclusions 

All tried corrections to forecast errors did not 
lead to nowcast better than LP (MAPLE)

At scales below 100 km NWP has no 
skill (when compared to radar)

Present data assimilation does not seem to lead to nowcasts better than 
MAPLE but shortens the time of MAPLE’s advantage

The lifetime of scales below 100 km is SHORT

Let’s shutdown the supercomputers for a decade so 
there is time to study model errors and their origin

Uncertainties in LP nowcast (not discussed here) are handled 
by pure statistical ensembling; some physics is in order

Monday, 12 August, 13


