

Research to Inform Policy and Decision-Making

Fernanda Zermoglio

To make informed decisions to respond to climate change on a sound, scientific, technical and socioeconomic basis, need to know:

- 1.What is expected to change? [variable]
- 2. Where are the changes expected? [spatial scale]
- 3.When are the changes likely to take place? [temporal scale]
- 4.How (un)sure are we about these changes? [level of confidence]

Data/Information

Knowledge Base

- Fragmented, Insufficient
- Poor public access
- Sources and conflicting messages: GCMs, RCMs, other downscaling

Outsource the climate analysis

Hire experts

Use pre-fabricated climate information products

 Draw from readymade climate change summaries (projections, impacts)

Rely more heavily on local observations and experiences

- Seek out some information (e.g. NAPA, NAMAS), extract general conclusions
- Research and emphasise community observations and experiences

 \downarrow

Defining what you need?

Knowing where to go and how to interpret?

Caveats

What will change? [variable]

Annual Temperature

Cardinal Months (Jan, Apr, Jul, Oct)

Std Dev; CV; Skewness

Frost Days

Cold Spells

Heat Waves

Temperature Analyses

GCMs/RCMs/St atistically Downscaled Data

Present 1971 - 90 Intermediate 2046 - 65 Distant Future 2081 - 00 Annual Rainfall
Cardinal Months
Std Dev; CV; Skewness
Seasonality and Concentration
Threshold Rainfalls Exceeded
Period with Raindays > Thresholds
Short and Long Duration Design P
Meteorological Droughts (S, M, M, / A, M)

Rainfall Analyses

Agricultural Analyses

Hydrological/ Ecological Analyses

Annual Runoff/Streamflow (mean, 10th, 50th, 90th)

Cardinal Months (Jan, Apr, Jul, Oct)

Std Dev; CV; Skewness; Kurtosis

Threshold Streamflows Exceeded

Soil Moisture

Peak Discharge

Sediment Yield

Hydrological Droughts (Sev, Mod, Mld, / An, Mo)

Period with Streamflows > Thresholds

1 - 7 Day Design Stormflows (2, 5, 10, 20, 50, 100 yr RP)

Indicators of Hydrological Alteration

Water Temperature

2nd Order Analyses

- Heat Units Chill Units 3rd Order Analyses
 - Pests / Diseases
 - Crops Agriculture
 - Crops Pasture
 - Crops Horticulture
 - Commercial Afforestation
 - Primary Production
 - Irrigation Requirements

Data/Information

Knowledge Base

- Fragmented, Insufficient
- Poor public access
- Sources and conflicting messages: GCMs, RCMs, other downscaling

Analytical tools

- No modern shared tools for analyzing future investments
- Poor decision-support focus

Matching scale of information to scales of intervention

- When are observable trends appropriate?
- What are the relevant data sources for obtaining these?
- When is a more precautionary approach warranted?
- How much flexibility is required in the intervention system?

Data/Information

- What are adequate biophysical and socio-economic metrics and models to synthesize impacts across sectors and regions (including policy decisions)?
- How can we improve consistency between interacting climate and impact models?
- Tools to facilitate data access: what tools, approaches, methods are available? How do we judge their effectiveness/ validate them?
- Examples of tools used in case studies, best practices – How can we learn from user experiences? (Eg. IDF curves)
- Lessons from the field: metjhods, approaches to improve the use of climate information

Comunication

"Bridgers"

- Knowledge Brokers..
- Nuance vs. Naivete

Challenges

- Communicating uncertainty
- If the formula for effective public communication requires simple, clear messages, repeated often by a variety of trusted sources...", then..

Communication, Con't

- Building capacity of briding institutions/ individuals

 what kinds of investments in capacity are
 appropriate and what scale of decision-making is
 most important to target?
- How to achieve integration of climate information into various sectors without loosing the necessary detail?
- Communicating climate risks to support decision making: What do decision makers want and need to know and how best to understand and deliver information?
- Lessons from the field: metjhods, approaches to improve the communication and use of climate information

Others

Planning Instruments

- Climate-proofing
- Mainstreaming

Others

- Costing?
- Role of the private sector
- Understanding the user base...
- Knowledge products?..

- Practical approaches to incorporating climate information in planning instruments..
- ..

City of Cusco Examples of real decisions to be made...

- How/Where to improve Hydropower generation?
- How to supply water for increasing domestic/urban uses?
- How to better operate existing water infrastructure?

- How to improve resilience to floods?
- How to cope with droughts?
- How to better resolve water conflicts?

...all these decisions are sensitive to climate. the "answers" require a careful consideration of climate variability and climate change.

Que (in)certidumbre tenemos sobre estos cambios?

- Sensibilizacion sobre el cambio climatico - incluyendo peligros de utilizar una sola fuente de información
- Postular preguntas correctas (ingenuidad vs matiz)
- Coincidencia de horizontes de planificación a la información potencialmente útil
- "Good Enough" información
- ¿Por qué downscale?

Which decision support tool

- Depends on type of answer
- Amount, quality of available information, goal

•A process – "adapting well, not well adapted"

Planning areas – areas in which a government or community manages, pla ns or makes policy affecting the services and activities associated with built, natural and human systems.

1. Sectors	2. Planning Areas	3. Current and Expected Stresses to Systems in This Planning Area
Hydrology and water resources	Water supply management	Low water supply during hot, dry summers; managing drought (current and expected)
		Poor water quality during flood events (current and expected)
		Poor water quality during summer (current and expected)
		Aging infrastructure and lack of funding for system upgrades (current and expected)
		Meeting increased demand from population growth (expected)
Infrastructure	Stormwater management	Combined sewer overflows (CSOs) during heavy rainstorms (current and expected)
		Lack of funding for system upgrades (current and expected)
Transportation	Road operations and maintenance	Road buckling during heat waves (current and expected)
		Winter road maintenance (snow/ice removal) (current and expected)
		Managing brush fires along roadways (current and expected)
		Erosion around bridge footings (current and expected)

Tools are Evolving...

1. How do we overcome the challenge of providing increasingly specialized scientific information to communities that approach problems "holistically and often intuitively"?

Desafíos

• Limitaciones en nuestros modelos y *metodos*

Projected changes in Annual rainfall by 2065 from 3 models

proyecciones difieren según el modelo