# Towards Early Warning Systems for Drought and Fire Risk in the Caribbean: **Analysing Data for Trinidad and Tobago**

## Denyse S. Dookie

Trinidad and Tobago / United States

PhD Programme in Sustainable Development, School of International and Public Affairs, Columbia University

## **RESEARCH OBJECTIVES**

To understand the viability and potential of available climate information for early warning systems for drought in Trinidad and Tobago (T&T), using 2010 drought as case study

Specific actions:

- Mapping the availability and accuracy of station precipitation and locally-sourced drought data proxies, with various precipitation and vegetation satellite data
- Investigating the potential use of information towards improved understanding of signs and circumstances of onset of drought-like conditions in Trinidad and Tobago

| Figure 2: Comparison of Vegetation Estimates                                                                             |                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| -     -     MODIS NDVI       -     -     adataset       -     -     MODIS NDWI       8     -     -       0     Modis EVI | <ul> <li>Review of vegetation indices show similarly trending values</li> <li>Instances of severe decline shown to exist particularly in early</li> </ul> |
|                                                                                                                          | months (dry season) of 2001,<br>2003 and 2010<br>- For 2010, declines in indices were                                                                     |

#### **RATIONALE FOR RESEARCH**



© TrindadAndTobagoNews.com



- Concerns of drought Jan-May 2010 (social, print media)
- Lowest ever Feb rainfall total for Trinidad recorded in 2010
- Physical, economic & social impacts: fire hazards, water scarcity, water rationing, food security & price inflation
- IPCC 2007 AR4 outlook: role of climate change leading to drier conditions within (much of) the Caribbean
- Annual temperature increase between 1.4°C to 3.2°C (median: 2.0°C), for region at end of 21st century (high conf.)
- Annual precipitation changes between -39% and +11% (median: -12%), region-wide
- NAO, ENSO changes associated with general drying effect
- Need for risk minimisation:



"at the right times", i.e. when media reports signaled increased drought/fire activity

• Could suggest potential for use in early warning of agricultural and ecosystems drought impact onset

- Potential use of vegetation index as early warning proxy for drought impacts ('drought watch') - Low level of NDWI can indicate risk of less vegetation moisture; could be good signal for fire risk • Note: Due to different timescales for comparison, NDVIg not shown; inconsistencies between NDVI products are present

### **FURTHER ANALYSIS REQUIRED**

General trends of satellite-local data performance need to be further and better analysed.

- Given limited availability of data, temporally and spatially, need to source and use alternative climate information
- Given limited accuracy of data, need to ensure consistency and verification before use in early warning systems
- Given limited acknowledgement of local T&T context, need to encourage more relevant investigation and analysis for effective uptake

#### Analysis in Progress:

- Using daily data for T&T (one station point), aim to define the degree of agreement between satellite and station data for peak rainfall within varying short windows of time (4, 7, 10, 21) day intervals)

#### EWS, national drought policy

• Given current vulnerability and level of resilience, increased & periodic disaster risk for drought, fire susceptibility possible

## **DATA SOURCES**

#### <u>Table 1</u>: Summary of Available Rainfall Data

<u>Table 2</u>: Summary of Available Vegetation Data

| Satellite Data Product                                 | Temporal Resolution                        | Data<br>Frequency | Spatial<br>Resolution    | Satellite Data Product                                                                                                                                                              | <b>Temporal Resolution</b>                                        | Data<br>Frequency                       | Spatial<br>Resolution |  |
|--------------------------------------------------------|--------------------------------------------|-------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-----------------------|--|
| CPC Merged Analysis of<br>Precipitation (CMAP)         | Jan 1979 – Nov 2011                        | monthly<br>pentad | 2.5°                     | NDVIg from NOAA-AVHRR<br>MODIS (NDVI, EVI, NDWI)                                                                                                                                    | 1 Jul 1981 – 31 Dec 2006<br>18 Feb 2000 – present                 | 15-day comp.<br>16-day comp.            | ~8 km<br>~250 m       |  |
| Global Precipitation<br>Climatology Project (GPCP)     | Jan 1979 – Jan 2010                        | monthly           | 2.5°                     | Local Data                                                                                                                                                                          | So                                                                | urce                                    |                       |  |
| Tropical Rainfall Measuring<br>Mission (TRMM)          | Jan 1998 – Dec 2013                        | daily<br>3-hourly | 0.25°                    | Media Reports, Fire Incidence<br>Disaster Data                                                                                                                                      | Survey of online media, Decemb<br>T&T Office of Disaster Prepared | oer 2009 – June 201<br>ness and Managem | 0<br>ent              |  |
| CPC Morphing Technique<br>(CMORPH)                     | Feb 2005 – Mar 2014                        | daily<br>3-hourly | 0.25°                    | Bushfire Data                                                                                                                                                                       | Forestry Division, T&T Ministry                                   | of Housing and the                      | Environment           |  |
|                                                        |                                            | 0 110 011.9       |                          |                                                                                                                                                                                     |                                                                   |                                         |                       |  |
| Station Precipitation Data                             | Temporal Resolution                        | Data<br>Frequency | Spatial<br>Resolution    | <ul> <li>T&amp;T Data Ranges: 60.5° to</li> </ul>                                                                                                                                   | 62° West Longitude; 10°to 11.5°                                   | North Latitude                          |                       |  |
| Global Historical Climatology<br>Network (GHCN)        | Jan 1946 – Aug 2013                        | monthly           | 16 stations*             | <ul> <li>Research has targeted use of freely available and downloadable data</li> <li>All Satellite Data obtained from and analysed through the Data Library of Columbia</li> </ul> |                                                                   |                                         |                       |  |
| Piarco Data (T&T Met Office)<br>T&T Data (WRA Reports) | Jan 1995 – Nov 2011<br>Jan 1995 – Dec 2008 | daily<br>monthly  | 1 station<br>15 stations | University's International Re<br>http://iridl.ldeo.columbia.edu                                                                                                                     | search Institute for Climate and                                  | Society (IRI):                          |                       |  |

## **PRELIMINARY RESULTS**

Figure 1: Comparison of Station Rain Gauge Data

with Satellite Rainfall Products at Piarco Station (Airport)

|   | Piarco Met Office<br>Piarco GHCN |   | - General similar performance of precipitation values, but some |
|---|----------------------------------|---|-----------------------------------------------------------------|
| ş | CMAP<br>GPCP                     | - | variation for specific periods                                  |

- As a starting point, this offers insight on the number of correlation "hits" between satellite and station data, towards more informed development of EWS for T&T
- With verified fire, drought events and other disaster data, vegetation signals can be better interpreted

### **POSSIBLE RESEARCH SYNERGIES**

- Ongoing regional work on Standardised Precipitation Index (SPI) in drought monitoring (national agencies/CIMH/UWI)
- Use of Climate Predictability Tool (CPT) in developing SPIs for forecasting meteorological drought
- Note: SPI is suggested proxy for meteorological drought/excessive rainfall onset & prediction
- Development of Drought Early Warning Information Systems (DEWIS) by CIMH
- Efforts to develop ground-based data corrected TRMM precipitation estimate by agencies in Caribbean, based on work done in Central America
- Collation and analysis of economic and social data and impacts of drought in the Caribbean

## **INFERENCES OF RESEARCH**

- Climate knowledge can offer validation of potential and utility of satellite estimates for T&T
- Better understanding of data can inform actions at the wider Caribbean level, and small islands/states in general
- Application of climate data could lead to improved information, awareness and response pathways for local drought and fire risk
- With socio-economic data, climate knowledge can help inform action strategies for reducing drought and fire risk and vulnerability



| <u>Table 3</u> : Corr<br>GHC<br>at Pl | iparison of<br>CN Station L<br>iarco | Error Stati<br>Data and V       | stics betwe<br>arious Satel       | en<br>llite Data                    | <u>lable 4</u> |
|---------------------------------------|--------------------------------------|---------------------------------|-----------------------------------|-------------------------------------|----------------|
|                                       | CMAP<br>Jan '98-Nov '11              | <b>GPCP*</b><br>Jan '98-Sep '08 | <b>TRMM*</b><br>Jan '98 – Nov '13 | <b>CMORPH*</b><br>Jan '03 – Feb '14 | Piarco Met     |
| Average                               | -70.63588                            | -41.489                         | -15.00235                         | -92.20594                           | Piarco         |
| <b>Root Mean Square</b>               | 98.77417                             | 58.83873                        | 34.73603                          | 117.5814                            |                |
| Correlation                           | 0.804837                             | 0.9897339                       | 0.9576664                         | 0.6703253                           | 1              |
| * With 92% monthly ave                | rage (non-missing val                | ues)                            |                                   |                                     | CM             |

(e.g. 2010 drought)

- Satellite values tend to underestimate "true" rainfall
- Lowest approx. error average is -15.5 mm/month (TRMM)
- TRMM and GPCP satellite data seem closely correlated to GHCN station data
- Note: spatial resolution, data gaps, possible data biases

: Comparison of precipitation data at Piarco for Jan-May 2010

|                   | Jan '10 | Feb '10 | Mar '10 | Apr '10 | May '10 |
|-------------------|---------|---------|---------|---------|---------|
| Piarco Met Office | 17.60   | 2.10    | 4.40    | 60.20   | 313.80  |
| Piarco GHCN       | 18.00   | 2.00    | 40.00   | 60.00   | -       |
| CMAP              | 17.98   | 7.56    | 9.92    | 57.90   | 132.37  |
| TRMM              | 0.88    | 0.29    | 0.12    | 26.92   | 192.81  |
| CMORPH            | 4.41    | 14.93   | 5.13    | 57.39   | 301.84  |

- Better use, accuracy and awareness of data can inform efforts on climate services and partnerships
- Broader identification possible towards resilience-building of small islands against the impacts and consequences of climate change

#### **ACKNOWLEDGEMENTS & CONTACT INFORMATION**

Assistance with research focus, methodology and analysis of data kindly provided by:

- Pietro Ceccato, Environmental Monitoring Program, IRI
- Michael Bell, Climate and Environmental Monitoring, IRI
- Chris Small, Dept of Earth and Environmental Sciences, Columbia University
- Cédric Van Meerbeeck, Caribbean Institute for Meteorology and Hydrology

#### Facilitation of data kindly provided by:

- Trinidad and Tobago Meteorological Office
- John Agard, Head, Department of Life Sciences, UWI, St. Augustine, T&T
- Trinidad and Tobago Office of Disaster Preparedness and Management
- Forestry Division, Trinidad and Tobago Ministry of Housing and the **Environment**

Comments? Questions?

Please contact Denyse S. Dookie at dsd2123@columbia.edu

- IPCC 2007 AR4: Climate Change 2007: Working Group I: The Physical Science Basis, Section 11.9.3.1 Caribbean
- NDVI: Normalised Difference Vegetation Index
- EVI: Enhanced Vegetation Index (more optimised for, and responsive to, a decoupling of the canopy background signal and a reduction in atmosphere influences, when compared to the NDVI's sensitivity to chlorophyll)
- NDWI: Normalised Difference Water Index (a remote sensing estimate of vegetation liquid) water content from space)
- MODIS: Moderate Resolution Imaging Spectroradiometer (a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites)
- AVHRR: Advanced Very High Resolution Radiometers