Air-Sea Interaction in the South Atlantic Convergence Zone

Giulio Tirabassi Cristina Masoller Marcelo Barreiro

Outline

- The Problem: how to quantify the influence of the ocean over the South Atlantic Convergence Zone (SACZ) ?
- The Methods:
 - Granger Causality
 - Maximum Covariance Analysis
 - Climate Networks
- Results

The SACZ

- The South Atlantic Convergence Zone is a convective pattern, NW-SE oriented, over Southern Brazil
- It has a maximum in austral summer

0 0.15 0.1 -10 0.05 -20 Pa/s] 0 SACZ -0.05 -30 -0.1 -40 -0.15 -70 -60 -50 -40 -30 -20 -10 0

ω summer climatology

• It influences very populated areas of South America such as Minas Gerais, Sao Paulo and Rio de Janeiro

The Role of the Ocean

- How does the ocean impact over the SACZ?
- And the SACZ over the ocean?
- Barreiro at al. (2002) showed in models that SST can force a dipole of precipitation
- Chabres and Nobre (2004) showed the presence of a SACZ-induced cooling of the SST anomalies (negative feedback)

Granger Causality

- Having two processes X and Y we want to understand which is the master and which is the slave
- We write the two processes as autoregressive

$$Y_{t} = \sum_{j=1}^{D} a_{j} Y_{t-j} + \sum_{j=1}^{D} b_{j} X_{t-j}$$

- With this assumption we fit the parameters a_j and b_j under two hypothesis:
 - Forced: $b_i \neq 0$, with residuals R_f
 - Unforced: $b_i = 0$, with residuals R_{ij}
- If GCE > 0 X is said to be Granger causal of Y ($X \rightarrow Y$)

 $GCE = (R_u - R_f) / R_u$

Data

- ERA Interim Reanalysis ranging from Dec 1979 to Mar 2013
- Only austral summers
- 1.5 degrees of spatial resolution and 1 day of temporal resolution
- ω anomalies at 500 mbar as proxy for the SACZ
- Sea Surface Temperature anomalies for the state of the ocean

Local and Global Granger Causality

LOCAL GCE (direct upward/downward forcing)

Granger Causality SST $\rightarrow \omega$

Granger Causality $\omega \rightarrow SST$

LOCAL GCE (direct upward/downward forcing)

Granger Causality SST $\rightarrow \omega$

NONLOCAL GCE (Area Weighted Connectivity)

AWC Granger Causality $\omega \rightarrow SST$ 0.35 (b) 0.3 0.25 0.2 0.15 0.1 0.05 0 -60 -40 -20 0

AWC Granger Causality SST $\rightarrow \omega$

Principal Components

Principal Components

LEADING MODE

(a): NEUTRAL (c): $\omega \rightarrow SST$

(b): SST $\rightarrow \omega$ (d): SST $\leftrightarrow \omega$

Composites $SST \rightarrow \omega$

SACZ more developed over the ocean

Composites NEUTRAL

SACZ more developed over the continent

Box-Average Composites

 ω mode #1

CONTINENT

OCEAN

Summary

- Using Granger causality we disentangled air-sea interaction in the SACZ area.
- We found that SACZ events can manifest in four different flavours, depending on the interaction taking place among the atmosphere and the ocean.
- When the ocean forces the atmosphere, the SACZ develops more over the sea.
- When there is no significant interaction among air and sea, the SACZ develops more over the continent.

Thank You