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One of the goals of the SNIA project: to improve seasonal forecasts over Uruguay

¢J

to improve their spatial and temporal resolution for the use in the agricultural sector

Why?
e daily temperature and precipitation are needed to force crop models

* Crop vields are affected by ‘weather-within-climate’
(e.g.: dry spells, extreme heat during flowering, etc)

e Some of this processes are strongly location-dependent and spatially-restricted
(e.g.: convective storms affecting vineyards, a given soil type flooded by a wet spell )
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One of the goals of the SNIA project: to improve seasonal forecasts over Uruguay
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to improve their spatial and temporal resolution for the use in the agricultural sector

IRI Multi-Model Probability Forecast for Precipitation
for June-July-August 2014, Issued March 2014

What is the baseline ?

Seasonal forecast + downscaling methodology
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What is the baseline ?

Seasonal forecast + downscaling methodology
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One of the goals of the SNIA project: to improve seasonal forecasts over Uruguay
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to improve their spatial and temporal resolution for the use in the agricultural sector
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Can seasonal forecasts provide any skillful information on sub-seasonal timescales ?



OBJECTIVES AND PREVIOUS RESULTS - RAINFALL

* To compare different seasonal GCM downscaling methodologies that can
capture seasonal rainfall statistics affecting crops :

e seasonal amount (S)

e Rainfall occurrence (O)

e average length of wet spells (W)
e Average length of dry spells (D)

* Based on results by Moron et al. we tested...

1. Local scaling of GCM output (LOC)

2. K-nearest neighbors classification scheme (KNN)

3. Weather-type classification (WTC)

4. Non-homogeneous Hidden Markov Model (NHMM)
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PREVIOUS RESULTS - RAINFALL

Previous results have shown these methods to be skillful for different regions, like
Senegal:
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OBSERVATIONS DOMAIN AND DATA SOURCES

- 14 INUMET (Uruguay) precipitation Domairand DataSources
stations with almost complete records aoo sl e oo e
for the period 1980-2013 and the DJF . S :
season. /

- Different daily fields from the N _
NCEP/NCAR Reanalysis (NNR) | o
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[Historical] hindcasts operational

24-member ensemble forced with
observed SSTs = red dots are locations
of grid points ‘affecting’ Uruguay
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STATION DATA VS. ECHAM 4.5
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STATION DATA VS. ECHAM 4.5
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METHOD 1: local scaling

Precipitation is taken from the closest GCM grid point and the corrected for two factors:

- Rainfall threshold for rainy days
- Magnitude of rainfall accumulation in rainy days

GCM EM threshold for rainy days GCM EM scaling factor for rainy days
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The scaling is applied monthly and the following figures show the variability of the param
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METHOD 1: local scaling

This is the spatial distribution of the local scaling parameters after averaging over the se:
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AFTER LOCAL SCALING

Sep-Feb station mean rainfall amount [mm]

Sep-Feb EM GCM mean rainfall amount [mm]

Sep-Feb EM GCM mean scaled rainfall amount [mm]
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Method 2: WEATHER TYPE CLASSIFICATION

The basic principle is to make use of the fact that even if the GCM is not skillful at
forecasting rainfall properties, it might still be capturing the dominant circulation patterns

that control precipitation in the region.

A variable or a sets of variables are classified in ‘types’ and then used to discriminate

precipitation states.

NNR WT_hgt500_box2_vwnd850_UY_domain_Dec-Feb - Composites - 1980-2012

Classifiability Index - NNR WT_hgt500_box2_vwnd850_UY_domain_Dec-Feb 0.95% var
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Method 2: WEATHER TYPE CLASSIFICATION
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If a daily GCM state is determined to be ‘closests’ to a given
weather type, a sample (31 states) of station daily precipitation
values is drawn from within the pool corresponding to that
cluster 2 new ensemble of rainfall forecasts
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Method 3: K-NEAREST NEIGHBORS

The same combination of circulation ‘predictors’ is pre-filtered using a principal
component analysis that retains 95% of the variance (20 daily PCs) = NNR PCs

The obtained reanalysis EOFs are projected onto each ensemble member of the
GCM to obtain a set of ECHAM PCs

Without going through the extra WTC step, each occurrence of a GCM daily
predictor field is linked to a set of k-nearest neighbors (31) , within the pool of

station precipitation states corresponding to the observed reanalysis states.

new ensemble of rainfall forecasts
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Method 4: NONHOMOGENEOUS HIDDEN MARKOV CHAINS

As a second benchmark to measure the performance of KNN and WTC methods against, we
apply the NHMM. This model is based on the station rainfall records together with the same
set of predictors that modulate the occurrence of the model’s hidden states.

Homogeneous HMM — describes the joint distribution of historical daily rainfall amounts in
terms of a few discrete states, by making two assumptions of conditionality:

- rainfall on a given day only depends on the state active on that day,

- that the state active on a given day depends only on the previous day’s state.

Figure 1: Graphical model interpretation of a hidden Markov model
Nonhomogeneous HMM - enables downscaling from a set of predictors that then
modulate the Markovian transition probabilities between the states “nonhomogeneously”

over time. Once the model’s parameters have been learned, stochastic simulations of
rainfall can be generated at all the stations on the network (100) = new ensemble of

rainfall forecasts @ o e
OO

Figure 2: Graphical model interpretation of a nonhomogeneous hidden Markov model
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WHAT NEXT ?77?

Persevere! There still might be predictor combinations,
domains and periods for which we might get better skill

Consider other GCMs and Multi-model ensembles

Move to MOS-based downscaling methodologies (e.g., CCA)
CPT training in Montevideo next week!!!

Explore the output and potential tailoring of WCRP/WWRP S2S
program database for subseasonal hindcasts database
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iMuchas gracias!
Thank You!

gonzalez@iri.columbia.edu

Y @climatesociety
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