

SDSM TRAINING SESSION

Roxann Stennett-Brown Tannecia Stephenson The University of the West Indies Mona Campus June 26, 2018

SDSM developers

Professor Rob Wilby r.l.wilby@lboro.ac.uk

Dr Chris Dawson c.w.dawson1@lboro.ac.uk

SDSM – Statistical Downscaling Model

•End of 2016:

11,252 Registered Users100+ Countries

SDSM – Statistical Downscaling Model

• Sponsors

Environment Agency of England and Wales
 Canadian Climate Impact Scenarios Group
 Environment Canada
 Loughborough University

- A means of deriving local-scale surface weather from regional-scale atmospheric predictor variables
- Method to obtain local-scale weather and climate, particularly at the surface level, from regional-scale atmospheric variables that are provided by GCMs

- General Circulation models (GCM) are physical representations of key processes in the atmosphere, ocean and land.
- GCMs are coarse in their resolution (~200km), so there is a limitation to the scale of useful information obtainable for small island states.(i.e. They are unable to resolve important sub grid features such as topography)
- GCM's therefore cannot be used for local impact studies.

- To obtain high resolution future climate information two main types of downscaling techniques are used.
 - Statistical downscaling (Point Location)
 - Dynamical downscaling (Region) using Regional Climate Models (10-50km)
 - Statistical downscaling methods involve developing quantitative relationships between largescale atmospheric variables—the predictors—and local surface variables the predictands (Giorgi 1990; Kidson and Thompson 1998).

- Statistical downscaling methodologies have several practical advantages over dynamical downscaling approaches.
- In situations where low-cost, rapid assessments of localised climate change impacts are required, statistical downscaling (currently) represents the more promising option.

	Statistical downscaling	Dynamical downscaling		
Strengths	• Station-scale climate information from GCM-scale output	• 10–50 km resolution climate information from GCM-scale output		
	 Cheap, computationally undemanding and readily transferable 	 Respond in physically consistent ways to different external forcings 		
	• Ensembles of climate scenarios permit risk/ uncertainty analyses	 Resolve atmospheric processes such as orographic precipitation 		
	• Applicable to 'exotic' predictands such as air quality and wave heights	Consistency with GCM		
Weakness	• Dependent on the realism of GCM boundary forcing	• Dependent on the realism of GCM boundary forcing		
	 Choice of domain size and location affects results 	 Choice of domain size and location affects results 		
	• Requires high quality data for model calibration	 Requires significant computing resources 		
	 Predictor-predictand relationships are often non-stationary 	Ensembles of climate scenarios seldom produced		
	Choice of predictor variables affects results	 Initial boundary conditions affect results 		
	Choice of empirical transfer scheme affects results	 Choice of cloud/ convection scheme affects (precipitation) results 		
	 Low-frequency climate variability problematic 	 Not readily transferred to new regions or domains 		
	 Always applied off-line, therefore, results do not feedback into the host GCM 	• Typically applied off-line, therefore results do not always feedback into the host GCM		

SDSM – Statistical DownScaling Model

 SDSM uses a hybrid statistical downscaling approach which incorporates multiple linear regression and weather generator schemes to create the statistical models and produce the future daily time series for the climate variables of interest. (Stennett-Brown R. et al 2017).

Getting started

- Ensure model is installed and for ease a shortcut created on desktop.
- Grid box is downloaded and extracted to suitable file location.
- SDSM File format:
 - ✓ Predictand (i.e. station data for e.g. Tmax) should be single column daily data starting from 1961.
 - ✓ Start date is 1961. Use -999 for any missing data.
 - \checkmark ensure predictand (station data) is .txt file.

File format for predictand

<i>[</i>]	Bah_tm	nax - Note	pad			-	Х	
File	Edit	Format	View	Help				
27.9)							^
28.3	3							
25.4	1							
23.3	3							
23.4	1							
25.4	1							
27								
27.9)							
26.2	2							
23.6	5							
24.3	3							
25.6	5							
26.3	3							
27.9)							
26.1	L							
25.1	L							
24.4	1							
22.8	3							
23.3	3							
25								
20								
19.6	5							
26								
23.8	3							
25.8	3							
26.7	7							

Settings

Year Length: The default "Calendar (366)" allows 29 days in February every fourth year (i.e., leap years) and should be used with observed data.

Standard Start/End Date:

- > Enter Start date: 01/01/1961 and
- > End date: 31/12/2005.
- These dates will appear throughout the operation of SDSM, but may be updated from any screen.

Allow Negative Values: The default allows simulation of negative values by unconditional processes in the downscaling model (e.g., for minimum temperature); deselection truncates values at zero (e.g., for sunshine hours). Conditional processes (e.g., rainfall amounts) are unaffected by this button.

Default File Directory: Allows the user to select a default directory that is accessed by all screens when first searching for files. Select the SDSM folder.

Date modified	Туре	Size
25/6/2018 11:18 AM	File folder	
25/6/2018 11:18 AM	File folder	
25/6/2018 11:18 AM	File folder	
25/6/2018 11:18 AM	File folder	
25/6/2018 11:18 AM	File folder	
25/4/2014 5:34 PM	Text Document	1 KB
25/4/2014 5:33 PM	Text Document	1 KB
	Date modified 25/6/2018 11:18 AM 25/6/2018 11:18 AM 25/6/2018 11:18 AM 25/6/2018 11:18 AM 25/6/2018 11:18 AM 25/6/2018 11:18 AM 25/4/2014 5:34 PM 25/4/2014 5:33 PM	Date modified Type 25/6/2018 11:18 AM File folder 25/4/2014 5:34 PM Text Document 25/4/2014 5:33 PM Text Document

Advanced Settings

Model Transformation: The default (None) is used whenever the predictand is normally distributed (as is often the case for daily temperature). The alternatives (Fourth root, Natural log and Inverse Normal) are used whenever data are skewed (as in the case of daily precipitation).

Optimisation Algorithm: SDSM 4.2 provides two means of optimising the model – Dual Simplex (as in earlier versions of SDSM) and Ordinary Least Squares. Although both approaches give comparable results, Ordinary Least Squares is much faster.

SDSM file names and recommended directory structure

Extension	Explanation	Directory
*.DAT	Observed daily predictor and predictand files employed by the Calibrate and Weather Generator operations (input).	SDSM/Scenarios/Calibration
*.PAR	Meta–data and model parameter file produced by the Calibrate operation (output) and used by the Weather Generator and Generate Scenario operations (input).	SDSM/Scenarios/Calibration
*.SIM	Meta-data produced by the Weather Generator and Generate Scenario operations (output).	SDSM/Scenarios/Results
*.OUT	Daily predictand variable file produced by the Weather Generator and Generate Scenario operations (output).	SDSM/Scenarios/Results

SDSM Version 4.2.9

SDSM Steps

- The SDSM software reduces the task of statistically downscaling daily weather series into seven discrete steps:
- 1. quality control and data transformation;
- 2. screening of predictor variables;
- 3. model calibration;
- 4. weather generation (using observed predictors);
- 5. statistical analyses;
- 6. graphing model output;
- 7. scenario generation (using climate model predictors).

*Wilby and Dawson 2013

Quality control and data transformation

		C Quality Control	— [×	1
		File Edit Help			
C	top 1 1: click	😚 Hor Quality Control 🗿 Transform Data 🕥 Screen Variables 📀 Calibra	ate Model		
3	n the Ouglity	😧 Weath merator 😧 Summary Statistics 😧 Frequency Analysis 🜍 Scenario Generator 🜍 Compa	re Results		
0		Reserves Analysis			
C	control button	Rer Check File Settings			
		Select File Results			
ſ	Cham 1 Decade at	Select File Minimum:			
	Step 1.3: select	Maximum:			
	check file	Mean:			
		Number of values in file:			
		Missing values:			
		Number of values ok:			
	Step 1.2: select	Maximum difference:			I
	predictand file	Maximum difference value 1:			
	for e.g. Tmax,	Maximum difference value 2:			I
	Tmin.	Missing value code: -999			
					Í

Quality control and data transformation

	File Edit Help
	😚 Home 🥥 Quality Control 📀 Transform Data 📀 Screen Variables 🥥 Calibrate Model
	📀 Weather Generator 📀 Summary Statistics 📀 Frequency Analysis 📀 Scenario Generator 🥥 Compare Results
	Time Series Analysis
Quality check complete X	Reset Check File %
17897 values processed in TrinidadPiarco_tmax.txt.	Select File Results
	Select File Minimum: 23.3
ОК	File: TrinidadPiarco_tmax.txt Maximum: 36.5
	Mean: 31.38117
	Number of values in file: 17897
	Missing values: 4018
	Number of values ok: 13879
	Maximum difference: 10.4
	Maximum difference value 1: 33.7
	Maximum difference value 2: 23.3
	Missing value code: -999

_

Quality control and data transformation

File Edit Help Image: Step 1.4: click on the Transform Data Step 1.4: click on the the Transform Data Step 1.4: click on the Transform Data Step 1.4: click on the Transform Data Step 1.4: click on the	
Big Home Quality Cor Transform Data Screen Variables Calibrate Model Weather Generator Summar Step 1.4: Click on The Transform Data Select Input File File Not selected Ocherence is least File Ln e Log 10 Select Output File Select Output File	
Step 1.4: click on the Transform Data Columns is least File Columns is least File Columns is least File Columns is least File	
Step 1.4: click on the Transform Data Step 1.4: click on the Transform Data Select File File: Not selected	
Step 1.4: click on the Transform Data Step 1.4: click on the Transform Data	
Select Input File Select File File: Not selected Celumona in larget File Celumona in larget File Celumona in larget File Celumona in larget File	
Step 1.4: click on the Transform Data Select File File: Not selected File: Not selected File: Not selected	
Step 1.4: click on the Transform Data File: Not selected © Ln © Ln © Ln	
Step 1.4: click on File: Not selected © Ln • e × the Transform Data Columns is last title • Log • 10 ×	
the Transform Data	
1	
● X ⁴ ● X ⁰ .25 File: Not entered	
Create SIM File ───── ○ 1/X ○ X	
Create	
Backward change	
_ Extract Ensemble Member _	
Extract 1 Binomial 0	

Screening of predictor variables

	🕄 Quality Contro	I					- 0	×
	File Edit Help							
	🗞 F	Home 📀	Quality Control 🧯) Transform	Dat Screen Variables 🕻	Calibrate Mode	1	
	Weather Gene	erator 📀 Su	ummary Statistics 🧯	Frequency	Jysis 🤌 Scenario Generator 🕻	Compare Result:	5	
	Time Series An	alysis						
	Reset Check	File Settings	5					
	_ Se	elect File		Γ	Results			
		Sel	lect File		Minimum:	23.3		
	F	ile: TrinidadF	Piarco_tmax.txt		Maximum:	36.5		
					Mean:	31.38117		
					Number of values in file:	17897		
					Missing values:	4018		
					Number of values ok:	13879		
Step 2.1: Click on the Sereen Variables					Maximum difference:	10.4		
ine screen vanables					Maximum difference value 1:	33.7		
button					Maximum difference value 2:	23.3		
					Missing value code:	-999		

Screening of predictor variables

C2 Results

File Help

RESULTS: EXPLAINED VARIANCE

Analysis Period: 01/01/1961 - 31/12/2005 Significance level: 0.05

Total missing values: 270

Predictand: TrinidadPiarco_tmax.txt

The strongest correlation in each month is shown in red, indicating that the relationship between maximum temperature and p500, $p1_u$ and p1zh are most important. Blanks represent insignificant relationships at the chosen **Significance Level.**

 \times

Predictors: JAN. FEB MAR. APR MAY JUIN. JUL ALIG SEP OCT NOV DEC 0.047 0.032 ncepp1_ual.dat 0.042 0.067 0.041 0.0290.056 0.068 0.108 0.176 0.113 ncepp1zhal.dat 0.033 0.096 0.104 0.060 0.082 0.034 0.012 0.012 0.037 0.032 0.032 0.015ncepp500gl.dat 0.0640.098 0.130 0.086 0.036 0.017 0.007 0.010 0.035 0.030 0.0410.037 0.097 0.112 0.076 0.019 0.0530.045 0.020 0.032 ncepshumal.dat 0.010

The local knowledge base is invaluable when determining sensible combinations of predictors

Screening of predictor variables: Correlation Matrix

€2 Results ×							
File Help							
Image: Second							
CORRELATION MATRIX							
Analysis Period: 01/01/1961 - 31/12/2005 (Annual)							
Missing values: 54 Missing rows: 54							
1 1 2 3 4 5 1 1 1 0.284 0.228 0.224 0.256 2 ncepp1_ugl.dat 0.284 1 0.187 -0.185 0.146 3 ncepp12hgl.dat 0.224 0.218 0.147 1 -0.010 4 ncepp500gl.dat 0.224 0.185 -0.010 1 0.497 5 ncepshumgl.dat 0.256 0.146 -0.239 0.497 1							
PARTIAL CORRELATIONS WITH TrinidadPiarco_tmax.txt							
Partial r P value ncepp1_ugl.dat 0.244 0.0000 ncepp1zhgl.dat 0.229 0.0000 ncepp500gl.dat 0.162 0.0000 ncepshumgl.dat 0.160 0.0000							

Screening of predictor variables: Scatter Plot

Model Calibration

Model Calibration

Model Calibration

 By using an appropriate quality control tool (see Figure) you may be able to have a good visualization of the data and hence will be guided best on how to split the data.

0

Model Calibration

Calibration Results

Calibra	ation Results								
File Help)								
📀 🎒 Back Print	🥑 Help								
Predictand: TrinidadPiarco_tmax.txt									
Predictors: hcepp1_ugl.(hcepp1zhgl.c hcepp500gl.(hcepshumgl.)	Predictors: ncepp1_ugl.dat ncepp1zhgl.dat ncepp500gl.dat ncepshumgl.dat								
Unconditiona	I Statistics								
Month January February March April May June July August September Dctober November December Mean	RSquared 0.126 0.211 0.315 0.187 0.170 0.066 0.051 0.066 0.111 0.224 0.145 0.084 0.146	SE 0.813 0.992 0.947 1.112 1.246 1.354 1.280 1.366 1.360 1.299 1.314 1.098 1.182	Durbin-Watson 1.468 1.418 1.227 1.209 1.155 1.517 1.540 1.512 1.710 1.503 1.661 1.419 1.445						

Calibration Results

The Scatter diagram plots the residuals against the modelled predictor while the histogram shows the distribution of the residuals

Model Calibration

- During model calibration a *.PAR file is generated that stores various parameters relating to the structure of the model. It is useful in diagnosing the cause of any unexpected model results or behaviour. The information held in the par file is below:
- [1] The number of predictors
- [2] The season code (12 = months, 4 = seasons, 1 = annual model)
- [3] The year length indicator (366, 365, or 360)
- [4] Record start date
- [5] Record length (days)
- [6] Model fitting start date
- [7] Number of days used in the model fitting

Model Calibration

- [8] Whether the model is conditional (True) or unconditional (False)
- [9] Transformation (1 = none, 2 = fourth root, 3 = natural log, 4 = lognormal)
- [10] Ensemble size
- [11] Autoregression indicator (True or False)
- [12] Predictand file name
- [13-16] Predictor filenames (in this case four)
- [17-28] Model parameters; the first 5 columns in this example are the parameters (including the intercept), the last two columns are the SE and r-squared statistic.
- [30] The root directory of the predictand file

The *.PAR file produced by the Calibrate Model screen

TrinidadPiarco_t	max61-83 - Notepad					
File Edit Format	: View Help					
4 12 366						
01/01/1961						
16436						
01/01/1961						
8400						
#FALSE#						
1						
1						
False						
TrinidadPiarc	o_tmax.txt					
<pre>ncepp1_ugl.da</pre>	t					
ncepp1zhg1.da	t					
ncepp500gl.da	t					
ncepshumgl.da	t					
30.286	0.095	0.161	0.140	0.191	0.813	0.126
30.672	0.105	0.259	0.209	0.313	0.992	0.211
31.188	0.307	0.201	0.361	0.314	0.947	0.315
31.320	0.093	0.265	0.327	0.362	1.112	0.187
30.990	0.258	0.371	0.401	0.172	1.246	0.170
30.538	0.215	0.225	0.245	-0.174	1.354	0.066
30.842	0.267	0.159	0.134	-0.233	1.280	0.051
30.770	0.239	0.390	0.001	0.352	1.366	0.066
30.760	0.283	0.270	0.177	0.386	1.360	0.111
30.856	0.633	0.145	0.409	0.015	1.299	0.224
30.594	0.442	0.140	0.288	0.142	1.314	0.145
30.227	0.184	0.089	0.236	0.196	1.098	0.084
C:\Users\Roxa	nn\Documents\R	oxannStennett-	Brown\Climate	Analysis\SDSM	Bolivia\Trinid	adPiarco tmax.txt

Weather Generator

- The **Weather Generator** can also be used to reconstruct predictands or to infill missing data.
- Follow the instruction in the manual.

An example of simulated file (.OUT file)

Trinidad	viarco_tmax61-05 - Note	pad									- 0	×
File Edit	Format View Help											
29.741	30.085	29.940	28.529	28.763	31.090	29.791	30.400	30.558	30.116	32.308	30.286	~
31.953	29.228	30.342	28.688	30.897	27.930	30.389	30.663	30.926	29.670	30.194	29.573	
30.186	29.928	30.571	30.245	27.923	31.091	30.090	30.178	29.120	29.740	30.523	30.030	
30.434	30.252	29.708	30.860	29.898	30.509	30.415	30.669	30.319	30.831	29.939	30.130	
29.498	30.456	30.654	28.759	30.372	30.506	30.198	29.548	28.887	29.948	28.902	28.910	
31.481	28.341	30.599	30.277	30.194	29.696	29.882	29.900	31.364	29.769	29.481	28.642	
29.809	28.920	29.882	31.078	30.110	30.652	29.805	29.014	30.364	30.430	30.388	29.868	
30.102	29.073	31.275	30.074	29.233	28.629	30.302	29.868	29.881	28.809	31.144	29.873	
30.098	29.179	29.671	29.679	30.181	30.510	31.143	29.996	29.279	29.353	29.083	30.257	
29.431	29.890	29.990	29.322	29.336	30.442	29.931	28.828	30.630	29.459	29.120	30.452	
29.037	30.719	30.322	29.737	30.885	28.752	28.007	29.539	27.555	30.267	29.350	28.751	
30.297	29.183	27.575	29.662	28.892	28.648	30.411	29.238	30.376	30.109	30.743	28.770	
29.286	29.693	30.427	29.848	30.002	30.475	28.746	29.489	27.852	28.515	28.970	30.447	
29.248	30.003	30.333	30.082	29.328	30.363	29.103	28.456	29.731	28,932	29.306	31.944	
28.687	29.636	29.456	31.918	29.440	31.083	30.391	29.316	29.639	30.069	29.038	29.123	
30.188	29.751	29.973	29.607	28.857	28.922	29.911	29.574	29.348	29.021	31.968	30.057	
30.871	30.113	31.039	28.196	30.390	30.956	30.880	28.585	30.042	31.242	29.119	30.036	
29.827	30.015	32.149	28.199	29.879	29.978	30.358	28.489	30.000	29.523	31.372	30.387	
29.969	30.134	30.933	30.700	30.237	30.729	30.850	29.557	29.697	29.419	30.663	30.568	
30.423	29.800	30.176	29.744	29.776	30.099	30.263	29.899	31.509	30.259	30.590	30.316	
30.827	30.480	30.734	29.642	30.573	30.368	32.707	31.387	31.010	31.071	30.385	29.876	
30.393	31.589	29.787	29.404	30.215	30.140	29.669	29.780	30.664	31.271	28.852	30.698	
30.752	29.270	29.372	31.271	29.519	32.060	29.692	28.943	29.662	30.253	28.030	30.143	
30.586	29.726	29.391	28.842	28.793	30.949	30.238	29.795	30.752	30.155	29.445	29.943	
31.637	30.837	30.367	28.536	30.593	29.566	29.391	30.622	29.986	31.296	28.743	30.824	
30.952	30.666	29.754	31.262	29.526	30.040	30.295	29.895	28.474	30.927	30.695	29.629	
30.429	30.502	29.855	30.583	29.931	30.405	29.563	30.120	28.928	28.710	29.473	30.492	
30.308	30.786	31.316	31.413	31.231	31.105	30.281	31.335	29.962	29,965	30.603	30.197	
28.318	30.266	29.835	30.467	30.346	30.886	30.584	30.251	30.117	31.000	31.408	30.336	
29.680	31.113	31.040	30.323	30.869	29.481	32.849	31.075	31.364	30.734	29.384	31.861	
30.909	31.672	30.225	32.171	30.941	30.925	29.118	29.305	31.029	30.765	30.398	29.458	
30.540	31.702	31.358	31.210	29.773	29.748	29.534	28.616	29.988	29.672	29.056	30.372	
30.747	30.463	29.923	28.676	31.761	30.302	30.710	30.317	31.697	32.190	31.278	28.045	
30.776	30.592	30.473	29.797	31.200	30.101	30.011	30.076	29.476	29.845	30.741	30.087	
33.288	31.030	29.220	31.033	31.743	33.046	30.594	31.300	31.941	31.498	31.595	31.965	
32.017	30.720	30.315	31.823	30.100	30.143	30.658	30.450	31.831	31.133	31.046	30.142	
31.748	30.725	31.101	30.750	29.070	29.399	30.521	32.062	28.972	30.803	30.404	30.145	
30.500	32.289	30.095	30.548	30.643	31.067	30.684	30.933	31.303	31.754	32.155	30.739	
31.389	30.841	30.908	32.098	30.988	30.575	29.799	29.929	31.028	31.396	28.999	30.823	~
<												>

Weather Generator

1)
U	
	_

TrinidadPiarco_tmax61-05 - Notepad File Edit Format View Help 4 12 366 1/1/1961 16436 #FALSE# 20 12 1 1 TrinidadPiarco tmax.txt ncepp1 ugl.dat ncepp1zhg1.dat ncepp500gl.dat ncepshumgl.dat

- **b** [1] the number of predictor variables;
 - [2] the number of regression models used (1=annual, 4=seasonal, 12=monthly);
 - [3] the maximum number of days in a year (here a calendar year is used, so there are up to 366 days in leap years);
 - [4] the start date of the data used for model calibration;
 - [5] the number of days simulated;
 - [6] whether or not the predictand is a conditional (#TRUE#) or unconditional (#FALSE#) variable;
 - [7] the number of ensemble members;
 - [8] the variance inflation parameter (see Advanced Settings);
 - [9] the transformation code for conditional variables (1=none, 2=fourth root, 3=natural log, 4=inverse normal); [10] the bias correction parameter (see Advanced settings);
 - [11] the predictand file name;

• [12 onward] the predictor file name(s)

a) An example of the **.SIM file** which contains meta–data associated with the synthesis and **b)** Description of each line in SIM file.

Statistical Analyses

	🕄 Summary Statistics — 🗆 🗙
	File Edit Help
	🕤 👘 Home 🥥 Quality Control 🥥 Transform Data 🜍 Screen Variables 🌍 Calibrate Model
Sten 5 1.	📀 Weather Gen 🔵 Summary Statistics 📀 Frequency Analysis 🜍 Scenario Generator 🥥 Compare Results
	Junes Ant _{i Jo} ls
Click the Summary	
Statistics button	Reset Statistics Analyse Delta Stats Settings
Statistics button	
	Data Source — Modelled Scenario —
Stop 5 2:	Modelled Modelled
Siep 5.2.	Observed Predictors: 4
Select Modelled	Season code: 12
under Deter Courses	Select Input File Select Output File Year length: 366
Under Data Source	Select Output File Select Output File Scenario start: 1/1/1961
	Select File Save Statistics To No. of days: 16436
	Eller Trinided Director Ameri C/
	Analysis Period
	Analysis start date: 01/01/1984 Vise Ensemble Mean?
	Analysis end date: 31/12/2005 Ensemble Member: 0

Statistical Analyses

C2 Results	5						
File Help							
Image: General system Image: General system Back Print	🥑 Help						
SUMMARY STATISTICS FOR: TrinidadPiarco_tmax61-05.0UT							
Analysis Start Date: 1/1/1984 Analysis End Date: 31/12/2005 Ensemble Member(s): Ensemble Member(s): ALL							
Month January February March April May June July July August September December Winter Spring Summer Autumn Annual	Mean 30.091 30.513 31.219 31.728 31.567 30.462 30.610 31.102 31.598 31.537 30.208 30.263 30.208 30.263 31.502 30.727 31.319 30.955	Meximum 32, 754 34, 131 35, 477 35, 964 34, 587 34, 587 36, 067 36, 067 36, 067 36, 067 36, 067 36, 304 33, 783 34, 167 36, 305 36, 365 36, 365 36, 571	Minimum 27,469 26,549 27,796 28,081 27,279 26,589 26,631 27,152 26,492 26,493 26,800 26,632 27,223 26,361 26,531 25,914	Variance 0,748 1.286 1.246 1.405 1.933 1.946 1.742 2.145 2.296 2.295 1.353 1.156 1.608 2.013 2.287 2.008	Sum 932,833 862,675 967,787 951,831 978,581 913,845 948,903 964,154 947,950 977,652 924,403 936,456 2613,183 936,456 2613,183 2848,200 2828,902 2828,902 2826,004 11307,070		
January February March April May June July August September October November December Winter Spring Summer Autumn Annual	0.031 0.033 0.030 0.049 0.050 0.050 0.052 0.057 0.046 0.051 0.052 0.051 0.052 0.051 0.052 0.051 0.052 0.051 0.022 0.022 0.028 0.029 0.029 0.022	0.278 0.317 0.298 0.389 0.578 0.433 0.444 0.433 0.444 0.552 0.355 0.555 0.371 0.555 0.371 0.555 0.371 0.513 0.513 0.643 0.441 0.441	0.384 0.392 0.301 0.476 0.559 0.360 0.354 0.410 0.410 0.411 0.461 0.313 0.332 0.313 0.332 0.317 0.585 0.350 0.379 0.379 0.336	0.039 0.070 0.041 0.075 0.089 0.116 0.123 0.131 0.084 0.087 0.086 0.028 0.028 0.028 0.028 0.028 0.029 0.069 0.064 0.031	0.954 0.938 0.938 1.451 1.215 1.508 1.617 1.756 1.376 1.376 1.556 1.556 1.556 1.556 1.556 2.043 2.593 2.593 2.593 2.593 2.593 2.593		

) lp				
TISTICS FOR:	TrinidadPiarc	o_tmax.txt		
e: 31/12/2005 efs):				
Addition Million 1.779 33 0.055 36 .859 35 .281 35 .281 35 .281 35 .281 35 .285 34 .512 35 .444 36 .265 35 .4436 34 .928 33 .917 36 .215 35 .641 35 .709 36	aximum 1 200 2 300 2 300 2 300 2 300 2 300 2 300 2 500 2 500 2 300	Minimum 25,700 26,000 26,700 26,700 25,400 25,400 25,400 25,400 24,600 24,600 24,600 24,600 24,600 25,700 25,400 24,500 24,500 24,500	Variance 1.028 1.522 1.523 1.563 1.696 1.865 2.057 2.246 2.901 2.480 2.399 1.442 1.337 1.650 2.210 2.783 2.246	Sum 954.159 877.995 987.636 975.400 1000.723 937.041 976.873 997.073 973.314 1000.214 943.082 958.777 2963.759 2910.986 2916.609 11582.286
	2: 31/2/2003 r(s): san M. .779 33 .055 36 .859 35 .281 35 .281 35 .281 35 .285 34 .164 35 .444 36 .265 35 .444 36 .265 35 .445 34 .928 33 .917 36 .917 36	31/12/2005 sin Maximum 1 .779 33.200 . .055 36.100 . .859 35.300 . .513 35.900 . .281 35.300 . .235 34.700 . .512 35.500 . .444 36.500 . .444 36.500 . .426 33.900 . .928 33.900 . .917 36.100 . .917 36.100 . .918 33.900 . .917 36.100 . .917 36.100 . .917 36.500 . .051 36.500 . .709 36.500 .	an Maximum Minimum .779 33 200 25,700 .055 36,100 26,000 .859 35,300 25,700 .513 35,900 26,700 .281 35,300 26,400 .235 34,700 25,400 .512 35,600 26,400 .444 36,500 25,500 .265 35,500 25,400 .436 34,800 24,600 .928 33,900 24,600 .917 36,100 25,700 .641 35,600 25,700 .641 36,500 24,600 .913 36,500 24,500 .709 36,500 24,500	an Maximum Minimum Variance 779 33 200 25 700 1.028 .055 36 100 26 000 1.522 .859 35 300 25 700 1.471 .513 35 900 26 700 1.696 .235 34 700 25 400 1.696 .235 35 500 26 400 1.696 .512 35 100 25 700 2.057 .164 35 600 26 400 2.246 .444 36 500 25 500 2.901 .265 35 500 25 400 2.480 .436 34 800 24 500 2.399 .928 33 900 24 600 1.337 .215 35 600 25 700 1.650 .641 35 600 25 400 2.210 .051 36 500 24 500 2.783 .709 36 500 24 500 2.246

Example output of **Summary Statistics** (Modelled results-left, Observed results-right) showing the mean and standard deviation (modelled) of diagnostics for a 20-member ensemble

Graphing Model Output

Graph of observed vs modelled for Trinidad Piarco 1984 -2005

	💭 Scenario Generator — 🗌	×
	Mome Quality Control Transform Data Screen Variables Calibrate Model Weather Generator Summary Statistics Frequency Analysis Scenario Generator Compare Results	
	Ime series Analysis Ime series Analysis Reset Generate Settings	
Step 7.1:	Select Output File Save To, OUT File	
Generator.	Select Parameter File File: TrinidadPiarco_tmax.61-83. TrinidadPiarco_tmax.bt ncepp1_ugl.dat ncepp1zgl.dat (*.SIM also created)	
	GCM Directory	
	Image: Analysis No. of predictors: 4 Image: Analysis No. of predictors: 4 Image: Analysis Autoregression: False	
	CanESM2_rcp26_200 CanESM2_rcp45_200 CanESM2_rcp45_200 CanESM2_rcp85_200 CanESM2_rcp85_200	

Step 5.9: Select appropriate statistics.

Results

C2 Results

File Help

SUMMARY STATISTICS FOR: TrinidadPiarco_tmaxRCP26.0UT

Analysis Start Date: 1/1/1961 Analysis End Date: 31/12/1990 Ensemble Member(s): Ensemble Member(s): ALL

Month	Mean	Maximum	Minimum	Variance	Sum
January	30.799	33.645	27.963	0.820	923.982
February	31.188	35.014	27.578	1.360	935.653
March	31.681	35.536	28.003	1.384	950.416
April	31.752	35.712	27.829	1.535	952.549
May	31.568	35.996	27.026	1.909	947.030
June	30.947	35.333	26.533	1.930	928.411
July	30.991	35.137	26.873	1.718	929.731
August	31.210	35.614	26.736	1.978	936.302
September	31.846	36.345	27.605	2.005	955.392
October	32.090	36.612	27.527	2.050	962.696
November	31.662	35.999	27.186	1.945	949.862
December	31.158	34.850	27.432	1.374	934.755
Winter	31.049	35.168	27.262	1.217	2704.248
Spring	31.667	36.105	27.011	1.616	2849.995
Summer	31.049	35.824	26.358	1.890	2794.444
Autumn	31.866	36.828	26.959	2.032	2867.950
Annual	31.408	36.828	26.243	1.823	11306.778
Standard Dev	/iations of Resu	ults			
January	0.021	0.316	0.223	0.034	0.618
February	0.027	0.413	0.337	0.060	0.813
March	0.026	0.378	0.359	0.053	0.777
April	0.045	0.393	0.375	0.054	1.353
May	0.047	0.399	0.670	0.084	1.398
June	0.050	0.427	0.510	0.074	1.501
July	0.037	0.457	0.272	0.090	1.123
August	0.056	0.382	0.379	0.093	1.690
September	0.045	0.486	0.463	0.086	1.360
Uctober	0.041	0.423	0.570	0.124	1.236
November	0.055	0.370	0.466	0.063	1.636
December	0.049	0.461	0.409	0.046	1.478
Winter	0.021	0.394	0.326	0.023	1.856
Spring	0.020	0.364	0.668	0.038	1.817
Summer	0.034	0.323	0.475	0.006	3.032
Autumn	0.023	0.389	0.469	0.048	2.047
Annuai	0.014	0.389	0.565	0.018	0.124

Result

Quantile-Quantile Plot

