

Poster.7: . Analysis of extreme hydrological events in the Uruguay River basin

^{1,2,3}Moira Doyle, ⁴Gonzalo Díaz, ^{1,5,3}María Laura Bettolli, ^{1,5,3}Silvina A. Solman, ⁶Rosmeri Porfirio da Rocha, ⁷Marta Llopart, ⁸J. M. Gutierrez, ^{1,9,5}Rocío Balmaceda Huarte, ⁴L Chavez and ¹⁰Josefina Blazquez

¹Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (DCAO-FCEN-UBA), Buenos Aires, Argentina

²Institut Franco-Argentin d'Estudes sur le Climat et ses Impacts, Unité Mixte Internationale (UMI-IFAECI/CNRS-CONICET-UBA), Buenos Aires, Argentina

³Centro de Investigaciones del Mar y La Atmósfera (CIMA), CONICET-UBA, Buenos Aires, Argentina

⁴Servicio Meteorologico Nacional

⁵Institut Franco-Argentin d'Estudes sur le Climat et ses Impacts, Unité Mixte Internationale (UMI-IFAECI/CNRS-CONICET-UBA),

Buenos Aires, Argentina

⁶Departamento de Ciências Atmosféricas, Universidade de São Paulo (USP), São Paulo, SP, Brazil

⁷ Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Bauru, SP, Brazil

⁸Meteorology Group, Instituto de Física de Cantabria (IFCA), CSIC-Univ. Cantabria, Santander, Spain

⁹Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

¹⁰ Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata, Argentina

contact: doyle@cima.fcen.uba.ar

Abstract

During the periods October 2009-March 2010 and October 2015 - March 2016 several extreme precipitation events occurred in southeastern South America and impacted on the Uruguay River streamflow. Within the framework of the Flagship Pilot study in southeastern South America endorsed by CORDEX, statistical and dynamical simulations were performed for these particular periods. These extreme events are analyzed based on precipitation outputs from regional climate models (RCMs) and empirical statistical downscaling (ESD) in comparison to weather station observations within the Uruguay River basin. Model outputs and observations are also used to force the macroscale hydrological Variable Infiltration Capacity (VIC) model to study the impact on river flows. Correlations are significant between observation and model simulated streamflow though with considerable spread. The 85th, 90th and 95th percentiles are calculated to determine the wet events and the 5th, 10th and 15th percentiles for the extremely dry events for each of the models and the observed data. Results indicate differences between the percentile values from model outputs and observations, and also on the date associated with each of the selected events. There are less differences in the dates associated with the 95th percentile in wet extreme cases and in general the degree of coincidence is smaller with RCMs. Streamflow results for extremely high and low percentiles show smaller differences than precipitation.