

A preliminary assessment of convection-permitting simulations over southeastern South America performed with the WRF model

Solman S(1,2) and Feijoo M(3)

⁽¹⁾ DCAO-FCEN-UBA, Buenos Aires – Argentina; ⁽²⁾ CIMA/CONICET-UBA, Buenos Aires – Argentina ³⁾ Servicio Meteorolçogico Nacional, Buenos Aires – Argentina

solman@cima.fcen.uba.ar

RF20

Background

- Extreme precipitation events over Southeastern South America (SESA) during the spring and summer are responsible of more than 80% of the total accumulated seasonal precipitation.
- These extreme events are associated with the occurrence of organized convection in the region and with anomalous moisture flux convergence

Challenge: Modelling extreme precipitation features

Objective

To assess the capability of a convection-permitting resolution regional climate model simulation in capturing extreme precipitation events over SESA.

Approach

- Two ensemble members 6-month length simulations with the WRF-ARW model (3.9.1) at 4 km resolution covering the period 010CT2015-31MAR2016 (WRF4C)
- WRF-ARW at **20km** resolution simulation over the CORDEX-SAM domain (WRF20).
- Initial and boundary conditions: ERA-Interim reanalysis

Data

3-hourly precipitation data from MSWEP, CMORPH and IMERGE satellite data

CHORD

Concluding remarks

- Large spread among different observational datasets in representing the spatial distribution and intensity of the mean and extreme precipitation in the SESA region.
- Convection permitting simulations outperform the 20km simulation in terms of the mean precipitation, the mean intensity and extreme precipitation.
- Major improvements in the convection permitting simulations are apparent in the timing of extreme precipitation.

WRF Model Set up

SW Radiation: RRTM							
	Land Surface: UNoah Shallow cumulus: Grimms						
		WRF4C1	WRF4C2	w			
	Microphysics	WDM6	WSM6	W			

Microphysics	WDM6	WSM6	WDM6	
PBL	YSU	MYNN3	MYNN3	
Surface Layer	Rev. MM5	ETA S	ETA S	
Cumulus	-	-	Grell-Freitas	

Acknowledgements >UBACYT2018 Grant 20020170100117BA

>Fondo para la Investigacion Científica y Tecnologica, Grant PICT2018-02496

>Datasets providers (CMORPH, MSWEP, IMERGE)

