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Continental margin carbon cycling is complex, highly variable over a range of space and time scales, and
forced by multiple physical and biogeochemical drivers. Predictions of globally significant air–sea CO2

fluxes in these regions have been extrapolated based on very sparse data sets. We present here a method
for predicting coastal surface-water pCO2 from remote-sensing data, based on self organizing maps
(SOMs) and a nonlinear semi-empirical model of surface water carbonate chemistry. The model used sim-
ple empirical relationships between carbonate chemistry (total dissolved carbon dioxide (TCO2 ) and alka-
linity (TAlk)) and satellite data (sea surface temperature (SST) and chlorophyll (Chl)). Surface-water CO2

partial pressure (pCO2) was calculated from the empirically-predicted TCO2 and TAlk. This directly incor-
porated the inherent nonlinearities of the carbonate system, in a completely mechanistic manner. The
model’s empirical coefficients were determined for a target study area of the central North American
Pacific continental margin (22–50�N, within 370 km of the coastline), by optimally reproducing a set
of historical observations paired with satellite data. The model-predicted pCO2 agreed with the highly
variable observations with a root mean squared (RMS) deviation of <20 latm, and with a correlation coef-
ficient of >0.8 (r = 0.81; r2 = 0.66). This level of accuracy is a significant improvement relative to that of
simpler models that did not resolve the biogeochemical sub-regions or that relied on linear dependences
on input parameters. Air–sea fluxes based on these pCO2 predictions and satellite-based wind speed mea-
surements suggest that the region is a �14 Tg C yr�1 sink for atmospheric CO2 over the 1997–2005 per-
iod, with an approximately equivalent uncertainty, compared with a �0.5 Tg C yr�1 source predicted by a
recent bin-averaging and interpolation-based estimate for the same area.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction and background

Coastal waters have been alternately reported as globally
important sources or sinks of atmospheric CO2 (Bianchi et al.,
2005; Borges, 2005; Cai et al., 2006; Ducklow and McAllister,
2005; Chen et al., 2004; DeGrandpre et al., 2002; Frankignoulle
and Borges, 2001; Hales et al., 2005; Smith and Hollibaugh,
1993; Thomas et al., 2004; Tsunogai et al., 1999, as summarized
by Hales et al. (2008)). The uncertainty stems from several factors.
First, the dynamic range of surface pCO2 in coastal waters spans
hundreds of latm over a variety of time and space scales
(Friederich et al., 2002; Cai et al., 2003; Cai, 2003; Hales et al.,
2005; Bates et al., 2005; Chavez et al., 2007). This makes adequate
observational constraint difficult to achieve, and global or regional
ll rights reserved.

ales).
flux estimations have always been the result of extrapolating a few
spatially and temporally limited observations far beyond their
scope (Hales et al., 2005; Thomas et al., 2004; Cai et al., 2006;
Borges, 2005). However, the vast majority of flux estimates based
on direct observation of pCO2 in coastal waters suggests that coast-
al waters are net sinks of atmospheric CO2. The fact that terrestrial
inputs of carbon via rivers supply nearly a petagram per year
(Pg C y�1; 1 Pg = 1015 g) of terrestrial carbon to coastal waters, al-
most none of which can be accounted for in coastal sediment or
water column reservoirs (Degens et al., 1991; Ittekkot and Laane,
1991; Spitzy and Leenheer, 1991; Hedges et al., 1997; Meybeck
and Vorosmarty, 1999; Aitkenhead and McDowell, 2000; Schlunz
and Schneider, 2000 as summarized by Bauer et al., 2008) further
complicates matters. This imbalance suggests a large efflux of
CO2, as argued by Smith and Hollibaugh (1993) that has not been
observed in coastal waters. Borges et al. (2005, 2006) offered the
possibility that estuaries may be the location of efflux of terrestrial
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carbon, while Cai (2011) suggested that marine-source carbon deg-
radation supported estuarine efflux while terrestrial material is de-
graded offshore. Again, sampling coverage is limited.

Chavez et al. (2007) compiled all the North American coastal
observations of pCO2 in the Lamont-Doherty Earth Observatory
(LDEO) database (now hosted by the Carbon Dioxide Information
Analysis Center (CDIAC) data server), to assess the contribution of
coastal waters to the continental carbon budget. They found that
North American coastal waters contributed a small net source of
CO2 to the atmosphere (�2 Tg C yr�1; 1 Tg = 0.001 Pg), but this
near-neutral flux was the result of large high-latitude sinks
(�35 Tg C yr�1 into the Pacific and Atlantic north of 50�N and the
Bering and Chukchi seas) that were balanced by large low-latitude
sources (�40 Tg C yr�1 out of the Pacific and Atlantic south of 25�S
and of the Gulf of Mexico and Caribbean Sea). Although the data
set included nearly 1 million observations, the ship of opportu-
nity-based sampling did not provide uniform spatial or temporal
coverage. In the bin-averaging approach employed by Chavez et al.
(2007) it is clear that the opposing large magnitude high and low lat-
itude sink and source terms were based on pixels with inadequate
observations throughout the calendar year (Hales et al., 2008).

With these concerns in mind, we have attempted to produce
synthetic approaches for estimating surface-water pCO2 distribu-
tions in coastal waters. True mechanistic modeling including accu-
rate physical circulation fields and biogeochemistry, driven by
actual physical forcing is ultimately the ideal approach. However,
modeling coastal environments is challenging even for only the
physical circulation, and to date the few truly coupled biogeo-
chemical/physical models that predict surface pCO2 distributions
are limited to narrow geographical regimes such as the southern
California Current system (e.g. Gruber et al., 2006) or the shelves
of the northwest North Atlantic (Fennel et al., 2008; Fennel and
Wilkin, 2009).

We present here a semi-empirical approach to developing algo-
rithms that link surface water pCO2 to remotely sensed data, in
addition to position and time. We found that two factors were crit-
ical: (1) an objective means for identifying biogeochemical sub-re-
gions within coastal waters, since there was very low success for
single predictive algorithms applied across wide geographical
areas such as the continental waters of North America; and (2) a
justified application of high-order dependences on input parame-
ters, since simple linear dependences were incapable of generating
the large dynamic ranges seen in the observed distributions. Given
these factors, we present a method that uses (1) self-organizing
maps (SOMs) based on satellite observations for distinguishing dis-
tinct provinces, and (2) a semi-mechanistic representation of the
relationships between seawater carbonate chemistry (total dis-
solved CO2 (TCO2 ) and alkalinity (TAlk)) and the input parameters
of sea surface temperature (SST) and chlorophyll (Chl). pCO2 was
then calculated from TCO2 and TAlk, thus incorporating the inherent
nonlinearities of the seawater carbonate system. We test this ap-
proach for the Pacific coastal waters of the central North American
continent, from 22�N to 50�N, within 370 km (�200 nautical miles)
of the shore.

Although this is not the first attempt to link surface-ocean pCO2

to more extensively-observable parameters, earlier approaches
have been substantively different. Most were in the open ocean
where dynamic ranges were smaller and pCO2 was not impacted
by the continental margins (Cosca et al., 2003; Lefevre et al.,
2005; Feely et al., 2006; Friedrich and Oschlies, 2009a,b; Park
et al., 2010), or in narrowly defined margin settings where individ-
ual drivers such as river plumes (Lohrenz and Cai, 2006) or thermal
forcing (Wanninkhof et al., 2006) dominate the pCO2 distributions.
Lefevre et al. (2005), Friedrich and Oschlies (2009a,b), and
Telszewski et al. (2009) did use the neuronal network approach,
but applied it only over the parameter space of their observations,
as opposed to the regional province identification that we applied
here. None of the previous efforts have attempted synthesis of a re-
gion so dynamic and diverse as the North American Pacific coast,
nor have any included mechanistically-justified nonlinearities as
we do here.
2. Materials and methods

2.1. pCO2 observations

We used the compilation of pCO2 data prepared by Chavez et al.
(2007), for waters surrounding the North American continent to
train the algorithm. These data were originally stored in the LDEO
pCO2 data repository, and are now available from CDIAC (http://
cdiac.esd.ornl.gov/). They consist of nearly 800,000 observations
made in the interval 1978–2005 (heavily weighted for more recent
observations), all based on analysis of equilibrated gas headspace
over flowing seawater streams or discrete samples. A significant
portion of these data, particularly those closest to shore were ex-
cluded from the global analyses of Takahashi et al. (1995, Takah-
ashi et al., 2002, Takahashi et al., 2009), and thus these
observations from continental margins have not been included in
broader estimates of air–sea CO2 fluxes.

We limited our analyses to observations made within 370 km of
the nearest major coastline, roughly consistent with the position of
the 200 nautical mile limit of national Exclusive Economic Zones
(EEZs). This limit is functional as well as operational. Essentially
all signals of coastal influences are gone by this distance from
shore, although exceptions do occur (Chavez et al., 2007). This ex-
tends the spatial limit of the analysis far enough to meet nearly all
of the landward-most boundaries of the global ocean syntheses of
Takahashi et al. (e.g. Takahashi et al., 2009), which were bin-aver-
aged at 4� latitude by 5� longitude bins. Finally, the EEZ boundary
represents the furthest distance where local governments may re-
strict access to local waters and the data collected therein. Thus,
this represents a distance from shore within which data may have
been excluded from regional or global compilations. Limiting the
observations to those made with coincident SeaWiFS satellite
observations, which started in September 1997, reduced the sam-
ple size to about 300,000. The North American data set was then
divided into four regions—Atlantic, Gulf of Mexico/Caribbean, Paci-
fic, and Bering/Chukchi coastal waters. For the high resolution re-
gional analyses described below, we focused on the North
American Pacific coast between 22�N and 50�N, where about
96,000 observations exist within 370 km of the coastline and with
coincident SeaWiFS data (see Section 2.2).

We did not attempt to correct the surface pCO2 data to a refer-
ence year, as done for the Takahashi global syntheses (e.g. Takah-
ashi, 2009). The dynamics of the coastal ocean are complicated
and unique within regions, with some being dominated by terres-
trial inputs, others by upwelling, others by local heating and cool-
ing. Water residence times within coastal regions can be short
relative to the age of the water masses themselves, and thus it is
questionable whether to treat freshly upwelled waters that might
have last been at the surface some decades ago (Feely et al., 2008)
with a modern adjustment to the in-water pCO2. Limiting the anal-
ysis to the SeaWiFS era suggests a very small correction for the
1995–2005 interval.

For the generation of the predictive algorithms, we used the
in situ SST recorded along with the pCO2 and satellite chlorophyll
measurements. We viewed this as important for the closest cou-
pling of the SST and pCO2 data. We examined the results using
the satellite-based SST (not shown) and found comparable results,
albeit with slightly inferior model-data deviation statistics. This is
not too surprising, given the reasonably good agreement between
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in situ and remotely-sensed SST. Salinity has promise as a predic-
tive input, especially in coastal areas where many water masses
may be present. However, we did not see significant improvement
in our predictive algorithms using reported in situ salinity, and
while remote-sensing salinity products are now available from
Aquarius (Lagerloef et al., 2008, and SMOS, Mecklenburg et al.,
2008), they will have the spatial, temporal, and salinity resolution
to distinguish only the largest features, such as river plumes.

We used recent data collected on a 2007 cruise off the North
American Pacific coast as a qualitative validation of the predictive
algorithm (Feely et al., 2008). The pCO2 data presented here were
analyzed using a flow-through membrane contactor interfaced with
a tangential–flow filter. This system has been described elsewhere
(Evans et al., 2011), and is a modification of earlier membrane-cont-
actor based systems (Hales et al., 2004) adapted to facilitate sur-
face-underway mapping with reduced user maintenance while
retaining the fast response times of the membrane contactor.

2.2. Remote sensing products

We used a variety of satellite products. For the SOMs (see be-
low) we used annual climatologies at 0.25� spatial resolution for
MODIS SST and Chl (July 2002 to December 2006), and QuikSCAT
wind stress (July 1999 to December 2006). Coincident match-up
with the pCO2 observational data used in the development of the
predictive algorithms were derived by averaging the 9 (3 � 3)
nearest 9 km pixels from 8-day averaged SeaWiFS Chl bracketing
each observation. For creation of the predicted maps of pCO2 distri-
butions and air–sea CO2 flux, we used the monthly average SeaW-
iFS Chl, MODIS SST, and QuikSCAT wind data at 0.25� spatial
resolution. It warrants repeating that the Chl–pCO2 data match-
up is based on remote-sensing data, while the SST–pCO2 data
match-up is based on in situ observations.
3. Calculations

3.1. Self organizing maps

We followed the approach of Saraceno et al. (2006). Briefly, this
method relies on an artificial neuronal network to identify biogeo-
chemical regions within the target study area. The method com-
prises a probabilistic version of the Kohonen (1990, 1995) self-
organizing map (SOM) and Hierarchical Ascending Clustering
(HAC) algorithms; for brevity we will refer to these as SOM only.
The approach is described in detail by Telszewski et al. (2009).
Each input parameter was transformed before being input to the
SOM. The Chl-a values were initially log-transformed and all three
parameters (SST, Chl-a, and wind stress) were mapped to the com-
mon range of �1 to 1, with the two extrema corresponding to the
raw extrema of each parameter. In the simplest terms, the SOM ap-
proach clusters pixels with similar properties and separates them
from dissimilar clusters. The scoring function is defined by the
interclass inertia, which can be thought of as the ratio of the dis-
similarity between clusters to the dissimilarity within clusters.
The SOM approach is given a maximum number of regions as a
stopping point, but operationally selects the number of regions
found when the interclass inertia has dropped to <10% of that seen
with the fewest number of regions as the best representation of
sub-regional distinctions.

3.2. Predictive models

3.2.1. Multiple linear regression model
We examined two kinds of predictive algorithms. The first was

a multiple linear regression (MLR), i.e.
pCO2;mlr ¼ C0 þ
Pn
i¼1

Cipi ð1Þ

where pCO2,mlr is the predicted pCO2. C0 and Ci are the coefficients,
and the pi terms are the independent variables, in the MLR. In our
case we considered the deviation in latitude, longitude from the re-
gion’s center (Dlat and Dlon, respectively), time of year, SST, and
chlorophyll as independent variables. Time of year was sine-trans-
formed, and allowed for an optimization of the seasonal phasing, e:

t � sin
2pday

365

� �
þ e ð2Þ

where ‘day’ was the decimal day of year.

3.2.2. Mechanistic nonlinear model
As shown in Section 4.2, we quickly found the MLR approach to

be inadequate for the high dynamic range of the observed pCO2,
even after applying the SOM to the study area, and built a new
meta-model that included the inherent nonlinearities of the aque-
ous carbonate system. We expect this model to be applicable only
to the SOM-defined sub-regions, and as a result did not attempt to
apply it uniformly to the entire study area. Knowing that the pCO2

is a quantitative nonlinear function of the alkalinity (TAlk) and total
CO2 (TCO2 ), we chose to develop a model that retained this func-
tionality. Conceptually, we assumed that the parameters TAlk and
TCO2 were approximated by some initial values plus perturbation
terms

TCO2 ¼ T0
CO2
þ DTCO2 ð3Þ

TAlk ¼ To
Alk þ DTAlk ð4Þ

where the perturbations were simply related to the processes of
mixing and biological productivity. These processes were subse-
quently linked to observed chlorophyll and temperature distribu-
tions. Specifically, we assumed first-order Taylor-series
approximations:

DTCO2 ¼
@TCO2

@T
DT
�

mixing
þ @TCO2

@Chl
DChl

�
biology

ð5Þ

where mixing is reflected in a temperature change term DT, and
biological processes in a chlorophyll change term DChl. These two
terms are each defined by:

DT�mixing ¼ øðT � T0Þ ð6Þ

DChl�biology ¼ ðChl� Chl0Þ ð7Þ

where T0 and Chl0 are empirical initial temperature and chlorophyll
values associated with the initial TCO2 defined above, and / is an
empirical term that quantifies the proportion of the temperature
change due to mixing as opposed to thermal forcing. The T and
Chl variables are the observed (either in situ or remotely sensed)
values of these parameters.

If we assume that the local mixing gradient and stoichiometric
relationship between chlorophyll and TCO2 can be treated as empir-
ical terms as well (c and b, respectively), and that the initial chlo-
rophyll is zero (reflecting recently upwelled water), the TCO2

approximation becomes:

TCO2 ffi T0
CO2
þ cøðT � T0Þ þ bChl: ð8Þ

The terms T0
CO2

, T0
Alk, T0, c, /, and b in the above equation are

each empirically-determined coefficients. The term b is given addi-
tional functionality in that it is set to zero for temperatures above a
certain value. This is shaped by the concept of upwelling, in which
water newly introduced to the surface is cold and nutrient-rich,
and changes in chlorophyll abundance are due primarily to net
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photosynthetic production. Waters that have been at the surface
for some time are more likely to be in a state of stationary, highly
recycled growth, and the dependence of TCO2 on chlorophyll would
be much weaker in those cases. We chose this ‘cut-off’ temperature
based on the predicted values of the T0 parameter within each re-
gion; specifically, chlorophyll dependence was allowed for all tem-
peratures 6T0 + 10 �C. This is a somewhat arbitrary choice, but as
discussed later, other complications in understanding the chloro-
phyll dependences are such that more detail is not warranted.

If we further allow each coefficient T0
CO2

, T0
Alk, T0, c, /, b to have

dependence on space and time, e.g.,

T0
CO2
¼ c0 þ c1Dlat þ c2Dlonþ c3t ð9Þ

where ci are empirical coefficients and Dlat, Dlon, and t are as de-
fined previously. We assume that the seasonal phasing in the t term
(e in Eq. (2)) is fixed for all terms in a given region. Finally, since
alkalinity is affected by change in NO�3 , which is, in turn, related
to TCO2 via the Redfield N/C ratio of 16/106 (=0.15), we assume that
perturbations to alkalinity are directly proportional to the changes
in TCO2 , i.e.,

DTAlk ¼ �0:15DTCO2 : ð10Þ

We have not included factors that may change the TCO2 :TAlk stoi-
chiometry from that implied by Redfield C:N stoichiometry. The
study site is not an area with large populations of calcifying organ-
isms (Hauri et al., 2009), and we expect that variations in alkalinity
production with respect to subtleties in the C:N stoichiometry will
be small relative to the other factors. Other factors that will influ-
ence the TCO2 :TAlk ratio such as terrestrial inputs and variations in
source-water characteristics are only captured empirically in the
formulation of Eq. (9).

The model thus predicts intermediate products for TAlk and TCO2 ,
which are then used to calculate pCO2 at the in situ temperature.
For calculating pCO2 from TAlk and TCO2 , we used an inorganic equi-
librium chemistry model for TAlk that included carbonic and boric
acid but ignored minor species, with the solubility of CO2 in seawa-
ter by Weiss (1974), the apparent dissociation constants by Mehr-
bach et al. (1973) for carbonic acid as adjusted to the seawater pH
scale by Dickson and Millero (1987) and by Dickson (1990) for bo-
ric acid. Thus, while TAlk and TCO2 are predicted by the model, they
are not used directly in the evaluation procedure. The calculated
pCO2 is the ultimate model output.

The model has a couple of deficiencies. First is the possibility
that there are as many as 25 optimizeable coefficients in the two
equations for TCO2 and TAlk that derive from Eqs. (2)–(10). We
needed to make some a priori limitation of this number, described
in Section 4.3, to limit the maximum possible number of coeffi-
cients. The second is that the model contains products of some of
the terms, which implies the possibility of interdependence and a
reduced set of truly optimizeable coefficients. This is addressed in
the Appendix.

3.3. Optimization

We chose to use Powell’s method for optimization in multiple
dimensions, as described in Press et al. (1989). This method has
the advantage in that it does not depend on the form of the equa-
tion being optimized, which is essential given the potentially var-
iable forms as empirical terms are included or excluded, and
because of the non-linearity of the step in which pCO2 is calculated
from the intermediate Alk and TCO2 products. In every optimization
exercise, all 25 empirical constants were explicitly included, even if
set to zero, but the optimization approach allowed selection of only
reduced sets of coefficients to optimize. For example, we could
specify that the chlorophyll dependence b is non-zero but remains
fixed at the nominal value of �7 (e.g. reflecting a 1:1 N:Chl ratio
and Redfield C:N stoichiometry).

Our diagnostic of algorithm performance was the root-mean-
squared (RMS) deviation between the observed and predicted
pCO2, over the complete set of the observations within each region.
We examined the sensitivity of the optimized results in two ways.
First, we tried optimizations with varied values of the initial
guesses of the optimized parameters. This included using the opti-
mum set of parameters as initial guesses and restarting the optimi-
zation procedure. This verified the stability of the optimum
solution. Second, we calculated coefficient-specific sensitivity fac-
tors (SFi) defined by:

SFi ¼
1

RMS
@RMS

� ��
1
Ci
@Ci

� �
ð11Þ

which effectively describes the relative change in RMS for a relative
change in coefficient ci. Coefficients with SF 6 0.1 – i.e., the opti-
mum RMS value changed by no more than 1% for a 10% change in
coefficient—were deemed insignificant.

3.4. Sensitivity analysis

Training an algorithm to reproduce a set of observations re-
quires additional verification and analysis of the sensitivity of the
model parameters to the dataset. The complexities of the model
obviated some of the more standard tools that could be easily ap-
plied to smaller data sets and linear systems, so we chose to take a
more rudimentary approach. After finding the optimum set of
model parameters for a given region, we perform ten additional
simulations to examine the robustness of the result. Each of these
simulations consisted of the same analysis as described above, but
with 10% of a region’s data randomly extracted from the total. The
remaining 90% were used as training data to repeat the optimiza-
tion procedure. The optimal model constrained by the training data
was then applied to the extracted 10% that had not been used in
constraining the optima.

3.5. Air–sea flux calculations

Once we mapped the best set of predicted pCO2 distributions,
we calculated air–sea CO2 fluxes. We did this by calculating a gas
exchange coefficient based on the quadratic wind-speed depen-
dence of Ho et al. (2006) and the QuikSCAT monthly wind speed-
squared data from the Scatterometer Climatology of Ocean Winds
(SCOWs) available at http://cioss.coas.oregonstate.edu/scow/,
based on the methods in Risien and Chelton (2008). We multiplied
this coefficient by the model-predicted air–sea pCO2 difference and
the gas solubility of Weiss (1974) for satellite SST and a fixed
salinity.

4. Results

4.1. Linear models

We began our analysis with an attempt to fit the pCO2 observa-
tions in the Chavez et al. (2007) synthesis data set, limited as de-
scribed above to within 370 km of the coasts and with coincident
SeaWiFS Chl data, with a multiple linear dependence in the form
of Eq. (1). This was without success (Fig. 1), and we recognized
the need to distinguish the major coastal regions (Fig. 2). The
MLR approach applied to these regions yielded better results,
particularly for the Gulf of Mexico/Caribbean waters (Fig. 2, lower
right) where our regression yielded statistics similar to the
prediction presented by Wanninkhof et al. (2006). The pCO2

distributions in Pacific coastal waters, however, were nearly as
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Fig. 1. Multiple linear regression representation of all of the pCO2 observations in
the Chavez et al. (2007) North American Continental Margins dataset. Solid
diagonal line represents the perfect-agreement 1:1 relationship.
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poorly reproduced by this attempt as were those from the entire
North American coastline. The essence of the failure was first that
the large dynamic range of the observed pCO2 was not in any way
reproduced by the predictions, and that there seemed to be little
meaningful dependence on any of the independent input variables.
This result suggested that the Pacific coast contained sub-regions
that were not well described by a single set of empirical parame-
ters, and that the inherently linear aspect of a MLR was insufficient
for reproducing pCO2 distributions with large dynamic ranges. Be-
cause the Pacific coastal waters presented the greatest challenge,
the rest of our efforts were directed at developing predictive algo-
rithms for this region.

4.2. Determination of regions

Fig. 3 shows the climatological distributions of satellite SST, Chl,
and wind stress over Pacific coastal waters as observed by these
three sensors. These data were used as primary inputs to the
self-organizing map determination of Saraceno et al. (2006) to de-
fine the regions shown in Fig. 4. The approach found 13 sub-re-
gions before no significant improvement (as defined earlier and
in Saraceno et al., 2006) was gained by adding more regions. These
Fig. 2. Comparison of multiple linear regression prediction of sea-surface pCO2 in
the four major coastal sub-regions of North America: (a) Bering Sea and Arctic
coastal waters; (b) the Atlantic coast; (c) the Pacific coast; (d) Gulf of Mexico and
Caribbean coastal waters. Solid diagonal lines represent the perfect-agreement 1:1
relationship.
objectively-determined sub-regions confirmed our thinking about
the distinctions of coastal areas of the Pacific coast and precisely
define important biophysical regions within this study area (Ta-
ble 1). Such an objective sub-division has not been done before
in this region, as far as we know. At the global scale, Longhurst
(2006) defined bio-geographical regions based on in situ and re-
mote sensing data. In the East Pacific, he defined only two regions
that overlap with our results: the California Current and Central
America Coastal provinces. Spalding et al. (2007) defined marine
ecoregions of the world along coastal and shelf areas. In the area
considered in this work they found six regions. In latitude, their
divisions approximately coincide with ours. However they did
not find cross-shore distinction of regions as we found. These divi-
sions separate coastal upwelled waters from offshore waters
remarkably well.

Once the sub-regions were defined and observations assigned
to each sub-region (Table 1), we developed distinct algorithm
parameters for each region. Our first attempt was to simply apply
the multiple linear regression of Eq. (1) to the subsets of data; the
results are summarized in Fig. 5 and Table 2.

This result is significantly improved over that applied to the Pa-
cific coastal data as a whole. On a numerically-averaged basis, the
RMS deviation between model and observations dropped to 57.8
from the initial 67 latm. Weighting by the areas of each region,
the RMS deviation dropped to 24.5 latm. Regions 1, 2, 4 and 13
were particularly well-described by this approach, with RMS devi-
ations <15 latm and correlation coefficients of �0.9. However im-
proved the results, there were still significant shortcomings.
Particularly in regions with large data densities and large dynamic
ranges, such as the costal upwelling areas from central California
northward and the regions immediately offshore of them, the
familiar pattern of the model inadequately reproducing the dy-
namic range of the data was evident. This suggests that the large
dynamic ranges of the data do not correspond with large ranges
in the input parameters, and argues for the application of a high-
er-order model. In addition, the coefficients of the simple linear
model demonstrate odd behavior (Table 2). Region 7, for example,
shows a large negative constant term that is compensated for by an
exceedingly high temperature dependence term. Furthermore,
chlorophyll dependences are insignificant in 9 of the 12 cases. In
the remaining three (Regions 1, 10, 13), sensitivity to chlorophyll
is barely significant by our SF < 0.1 criterion (SF 6 0.15), and the
coefficients show large variability in the sign and magnitude of
the dependences.
4.3. Mechanistic model

The ocean carbonate system has well known nonlinearities,
especially with regard to pCO2. The dependence of pCO2 on water
temperature is exponential, given established thermodynamics of
gas solubility (Takahashi et al., 1993). In-water processes that af-
fect TCO2 and TAlk impact pCO2 disproportionately; this effect is
known as the Revelle Factor (Revelle and Suess, 1957) and suggests
relative changes in pCO2 are �10th power dependent on relative
TCO2 changes for normal oceanic conditions. We experimented with
functionality that included a Revelle-factor dependence on an
empirically determined TCO2 and incorporated an exponential tem-
perature dependence following Takahashi et al. (1993). The funda-
mental nature of these relationships, however, is to predict relative
changes, and thus the empirical coefficients were not well con-
strained by the optimization procedure. Empirical nonlinearities
are easy to assign—we could simply employ polynomial depen-
dences on the input parameters of the MLR representation, but
doing this without mechanistic justification is questionable. As a
result, we chose not to pursue any of these approaches and to build



Fig. 3. Input data used for generating the self-organizing map (SOM) of Pacific coastal waters. Left, Sea-Surface Temperature (SST); middle, sea surface chlorophyll (Chl);
right, net southward wind stress.

Fig. 4. Self-organizing map of biogeochemical regions in the study area.
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the quasi-mechanistic model as described in Section 3.2.2, Eqs.
(3)–(10).

As stated previously, the model could potentially include a very
large number of optimizable coefficients. We felt that it was rea-
sonable to restrict this number in the following ways. The ratio
of TCO2 to TAlk is the leading factor in determining the pCO2 distri-
butions in the aqueous carbonate system. We opted to allow the
T0
CO2

term in Eq. (3) to retain the full time and space variability as
shown in Eq. (8). Assuming this would allow sufficient variability
in the ratio of T0

CO2
: T0

Alk, we chose to make T0
Alk in each region be

determined only by the corresponding constant term in Eq. (8).
This may have the effect of amplifying the suggested spatio-tem-
poral TCO2 variability, but TAlk is generally the more conservative
parameter and this was viewed as a reasonable trade-off for the
reduction in empirical coefficients. We further opted to allow the
terms /, c, b, and T0 to have only temporal variability. As stated
earlier, the temporal phasing for all parameters within a given
SOM region was assumed to be the same. The empirical model thus
depended on a maximum of 14 optimizable coefficients.

This is still a large number of coefficients, and there are two dif-
ferent approaches that could be taken to identify the most impor-
tant terms. First is a stepwise approach in which terms are
sequentially added and model improvement or lack thereof is as-
sessed at each step. Second is the approach we followed, in which
we allowed all 14 coefficients to vary initially, and then assessed
the sensitivity of the result to each one.

Results are shown in Fig. 6 and summarized in Tables 3 and 4.
The immediate first impression is of the improvement in the pre-
dictability of the pCO2 in the problem regions identified in the
MLR analysis. Region 9, in particular, the persistent upwelling re-
gion off central California that includes the large dataset from
the MBARI time-series, has significantly improved predictability
(R increased to 0.75 from 0.15, a 25-fold increase in the percentage
of variance explained) as a result of including the nonlinear mech-
anistic representation. Other regions (5, 8, 10, and 11) that include
large dynamic-range pCO2 observations are also better predicted
(R values 0.82 vs 0.57, 0.80 vs 0.60, 0.92 vs 0.79, 0.61 vs 0.07,
respectively). Regions can be broadly categorized into three
groups—those with high (P0.75) correlation coefficient and low
(620 latm) RMS (Regions 1–4, 8, 10, 13), those with high correla-
tion coefficient and high RMS (5, 9) and those with high RMS and
low correlation coefficient (7, 11, 12). The second group includes
the most intense temperate coastal upwelling conditions, where
the dynamics of source waters and terrestrial inputs may not be



Table 1
Description of sub-regions.

Region Area (km2) Number of pCO2 observations Description

1 43,924 684 Upwelling-influenced southern Baja and Sea of Cortez
2 261,489 1093 3rd offshore from Baja
3 94,406 959 Southern extreme
4 212,661 2764 2nd offshore from Baja
5 46,037 2139 Cascadia coastal waters; seasonal upwelling
6 106,421 0 Sea of Cortez, non-upwelling-influenced
7 182,506 105 Baja, most offshore
8 113,618 3106 Northern Baja coastal, upwelling
9 55,240 48,514 California coastal, persistent upwelling

10 75,105 861 Northern California offshore
11 169,190 3632 Cascadia offshore
12 175,591 22,542 Central California, 1st offshore
13 224,407 9801 Central California, 2nd offshore

Fig. 5. Region-by-region application of the MLR to the pCO2 data in each SOM region. There were no observations in Region 6. Results are summarized in Table 2. Solid
diagonal lines represent the perfect-agreement 1:1 relationship.

Table 2
Results of multiple-linear regressiona approach applied to data in each SOM region.

a Predictive function followed the form of Eq. (1), specifically, pCO2;p ¼ C0 þ C1Dlat þ C2Dlonþ C3t þ C4T þ C5Chl where t is as defined in Eq. (2), and Dlat and Dlon are the
deviations of the latitude and longitude from each respective mid-point of the region. Coefficients to which the prediction was significantly sensitive (SF > 0.1) are highlighted
in red text.
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Fig. 6. Region by region application of the nonlinear mechanistic model to the pCO2 observations in each SOM region. Results are summarized in Table 3. Solid diagonal lines
represent the perfect-agreement 1:1 relationsh.

Table 3
Results of the mechanistic optimization applied to the regions identified by the self-organizing map. Coefficients highlighted in red text are those with SF > 0.1. Italicized rows
show the combinations of coefficients applied to the regions to generate the pCO2 and air–sea CO2 flux maps in Figures.
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Table 4
Composite statistics for the cases described in Table 3.

Optimized coefficient set Number-weighted Area-weighted

RMS R RMS R

Full 41.7 0.76 19.0 0.82
Region-specific 43.6 0.72 20.1 0.79
Minimum 53.7 0.59 21.8 0.75
Applied 43.0 0.75 19.8 0.81

Fig. 7. Demonstration of predictive capability of the algorithm, for ten randomly-
selected groups of Region 9 data not included in algorithm training. See Table 5 for
details.
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well characterized by the simple model. The third group includes
two regions (11, 12) that sit immediately off the upwelling regions
5 and 9. Regions 11 and 12 are primarily offshore but include data-
containing pixels that impinge on the coastline, suggesting that the
resolution of the SOM may be a factor. The remaining region, 7, sits
far offshore in the SW portion of the study area, and data there
consists of two clusters that are separated by �200 latm. Other re-
gions in this area (1–4) do not show the same character and we are
uncertain of the reason for the poor model performance there.

Sensitivity analysis also shows some interesting results. First,
none of the regions required all 14 coefficients to be optimized. Re-
gion 1 showed sensitivity to a maximum of 13 coefficients, and Re-
gion 9 showed strong sensitivity to only 9 of the tested coefficients.
Second, the spatial dependence terms were only rarely significant
in the optimizations. Only Region 8 showed significant sensitivity
to both latitude and longitude dependence terms, and Regions 1,
2, and 4 were sensitive only to the latitude term. The remaining
8 regions showed no significant sensitivity to the spatial depen-
dence terms. This is satisfying, because one of the objectives of
the SOM approach is to cluster data within regions where biogeo-
chemical and hydrographic relationships are consistent, and thus
lessen non-mechanistic empirical spatial dependences.

Finally, the sensitivities to chlorophyll, while improved over
those seen in the MLR approach, are still puzzling. Regions 8, 9,
and 12 show no sensitivity to chlorophyll at all (neither c0 nor c4

in the ß term were significant; Table 3), while Regions 3–6 and
13 show sensitivity to only one of the two coefficients. Further,
the values of the coefficients themselves are puzzling. The magni-
tudes of ß implied by the optimized coefficients are often far from
the nominal ‘Redfield’ expectation of �-7. Equally puzzling in the
conceptual context of the model is the variation in the sign of
the first-order chlorophyll dependence. Region 7, for example,
has coefficients that suggest that ß changes from <�500 to >500
(lmol kg�1)/(lg l�1) over the course of the season. As discussed la-
ter, this dependence is hard to justify within the context of the
model, and probably indicates the need for a better representation.

We examined two additional subsets of optimizable parame-
ters. The first was the set identified as having sensitivity by the full
analysis. In 9 of 12 cases, the optimization statistics were essen-
tially equivalent between these reduced sets of coefficients and
the initial full set, with Regions 8, 11, and 12 being the exceptions.
The second reduced set of coefficients was one applied to all re-
gions that included no spatial dependence in the T0

CO2
term, and

no chlorophyll dependence. We justified this second choice be-
cause so few regions showed spatial dependence, and because
the chlorophyll dependences were only significant in half of the re-
gions. This showed only slightly worse performance than the sets
of coefficients selected specifically for each region, with Regions
4, 5, and 8 showing significantly worse predictive power with
these subsets.

We chose sets of coefficients for use in subsequent analyses
based on a combination of the statistics of the optimization and
the most conservative combinations of coefficients. When optimi-
zation statistics were comparable, for a given region with different
sets of coefficients, we selected the result with the lowest number
of optimized coefficients. These choices are italicized in Table 3,
and are the values used in Fig. 6 and subsequent pCO2 and air–
sea flux reconstructions (Figs. 8–10).

Composite statistics for the entire study region are presented in
Table 4. While the RMS deviation statistics are improved over the
SOM/MLR case (43 vs 58 latm on a number-weighted basis and
20 vs 25 latm on an area-weighted basis), the improvement is
shown most strongly for the correlation coefficient statistic (0.76
vs 0.32 and 0.81 vs 0.51 on number and area-weighted bases,
respectively). As R2 is often thought of as the fraction of true vari-
ance explained by a predictive relationship, the mechanistic model
thus explains 2.5 or 5.6 times more of the natural variability than
the MLR, based on areal or number weighting, respectively. The
areally-weighted mechanistic model applied to the SOM region de-
scribes about 66% of the observed variability, and reproduces the
observations to within about 20 latm. The robustness of this result
is addressed in the following discussion.

Although we performed sensitivity analyses for each region, we
present only the results of this exercise for Region 9. Region 9 con-
tained the most observations, and difficulty in representing that
data had presented us with one of the greatest motivations for
developing the detailed model. Results are detailed in Table 5,
where we examine the sensitivities of the model coefficients for
ten randomly selected subsets of 90% of the total observations in
this region. Little difference is seen in the values of the model
coefficients either within these ten simulations of between any



Table 5
Sensitivity analysis for Region 9.

Results with training data Verification data

n Alk0
T0

CO2
T0 / c e RMS R n RMS R

c0 c0 c4 c0 c4 c0 c4 c0 c4

43,599 2174.4 2174.1 �123.5 6.570 1.782 0.228 �0.008 �23.45 16.31 2.731 65.09 0.727 4915 64.64 0.727
43,655 2173.7 2174.1 �123.8 6.571 1.799 0.226 �0.010 �23.49 16.37 2.735 65.10 0.727 4879 64.56 0.731
43,616 2173.8 2174.2 �123.7 6.568 1.775 0.225 �0.009 �23.46 16.37 2.733 64.96 0.728 4898 65.83 0.719
43,691 2174.4 2174.1 �123.3 6.567 1.788 0.225 �0.010 �23.48 16.27 2.732 65.04 0.729 4823 65.11 0.717
43,794 2173.7 2174.1 �123.7 6.563 1.778 0.226 �0.008 �23.45 16.32 2.738 65.18 0.728 4720 63.77 0.723
43,711 2173.8 2174.2 �123.3 6.570 1.797 0.226 �0.010 �23.52 16.29 2.732 65.00 0.729 4803 65.45 0.715
43,689 2173.5 2174.1 �123.9 6.568 1.813 0.227 �0.009 �23.52 16.24 2.743 65.01 0.727 4825 65.38 0.725
43,503 2173.9 2174.1 �124.1 6.569 1.780 0.225 �0.007 �23.35 16.28 2.730 65.08 0.728 5011 64.74 0.715
43,648 2173.7 2174.1 �122.9 6.570 1.798 0.224 �0.010 �23.48 16.15 2.741 65.07 0.727 4866 64.89 0.727
43,785 2173.5 2174.1 �123.8 6.576 1.789 0.226 �0.010 �23.47 16.43 2.736 65.03 0.728 4729 65.14 0.724

Fig. 8. Monthly maps of surface pCO2 distributions generated using the coefficients in Table 3 and monthly climatologies of SeaWiFSChl and SST.
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of them and the result based on the full data set. This strongly sug-
gests that the model coefficients are not being fortuitously driven
by a few anomalous observations. The greater proof of the model’s
robustness comes in the analysis of the predictive power of a set of
coefficients with one set of training data for the 10% of the obser-
vations that were not included in the optimizations. These results
are shown in Fig. 7, and listed in Table 5. In each case, the model
based on the training data reproduces the verification data about
as well as the model based on either the reduced training subsets,
or the data-set as a whole. These results show relatively low sensi-
tivity to changes in the training and validation data, and suggest
that the predictions based on the full data set (Fig. 6; Tables 3
and 4) are broadly applicable.
We offer some further validation of the predictive approach via
comparison of the climatological May surface pCO2 predictions
with direct observations collected on a cruise (described in the
methods section) in May of 2007. The two representations are
shown in Fig. 8. The agreement is not perfect, but the predictive
algorithm for the climatological May captures many of the features
of the observed May 2007 data: The bands of low pCO2 near the
coasts of Oregon, Washington, and Vancouver Island, and regions
of strongly elevated pCO2 off the northern and central California
coast between Cape Blanco and Monterey are reproduced. Near-
shore pCO2 off southern California and Baja is lower than the
waters further offshore in both representations. Offshore pCO2 in
northern regions is lower than in the south, as seen in the



Fig. 9. Comparison of algorithm-predicted surface pCO2 distributions for a clima-
tological May (left panel) with observed pCO2 from a cruise from Vancouver, BC, to
Baja. Mexico in May, 2007.
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predicted distribution. This comparison, while admittedly qualita-
tive, represents a completely independent method of evaluating
the empirical approach developed here. It strongly suggests that
the features of the climatologically-defined pCO2 maps are persis-
tent. Thus, while the system is highly variable in space and time,
the relationships to remotely observable parameters are persistent
Fig. 10. Monthly climatologies of air–sea CO2 flux (mmol m�2 d�1; negative numbers
climatologies of wind-speed squared taken from the Risien and Chelton database (http:
and regional variability is not randomly spatially and temporally
ephemeral.

Given the apparently robust nature of the predictive algorithm,
we feel justified in producing monthly-resolved climatological
maps. Using the italicized sets of coefficients identified in Table 3,
we then generated maps of pCO2 distributions (Fig. 9) based on
monthly climatologies of MODIS SST and SeaWiFS Chlorophyll. It
is important to note that while the SOM region locations were sea-
sonally static and defined based on climatological fields, the values
of SST and Chl-a within those regions was time-variant following
the monthly-resolved climatology.

The monthly distributions of air–sea flux are shown in Fig. 10.
These distributions demonstrate the spatial variability expected
from recent publications (Hales et al., 2005; Chavez et al., 2007;
Ianson et al., 2010; Evans et al., 2011), but also reveal seasonal var-
iability that was previously less obvious. Every region, with the
possible exception of a small patch furthest offshore at 40�N, expe-
riences a change in sign over the course of the year. Even the high
source Region 9 becomes a weak sink from October to January, and
the strong-sink Region 5 becomes a weak source from November
to January. Overall, the notion that higher latitude regions are
stronger sinks than those to the south holds true for most of the
year, but even this has seasonal dependence; net out-gassing oc-
curs in northern regions during December–January while southern
regions actually take up CO2 during that time.

In addition to the features discussed above, the monthly maps
point out some deficiencies in the discrete SOM approach. In par-
ticular, sharp N–S gradients seen in June and July at the boundary
are into the ocean) generated from the pCO2 maps of Fig. 9 and the monthly
//cioss.coas.oregonstate.edu/scow/; compiled following Risien and Chelton, 2008).

http://www.cioss.coas.oregonstate.edu/scow/
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of regions 10 and 11, and the E–W banding across Regions 8, 4, 2,
and 1 in July–September are probably not accurate representations
of the true distributions. The SOM regions are distinct, and the
changes in the model coefficients at the region boundaries are dis-
continuous, while the satellite input fields are continuous. We have
applied no smoothing to the region transitions, and such artifactual
discontinuities are a likely result of this approach. While a smooth-
ing of the region boundaries would be straightforward and result
in a more visually pleasing result, we felt that no scientifically-rel-
evant information was gained by that and opted to show an un-
smoothed result that revealed this issue.

Air sea flux for North American Pacific coastal waters from 22�N
to 50�N and within 370 km of shore amounted to an annual-aver-
age sink of 1.8 mmol CO2 m�2 d�1. The most comparable flux esti-
mate from the Chavez et al. (2007) analysis, based on the three
1� � 1� bins nearest the shore, predicts a source of about
0.07 mmol m�2 d�1. Although not regionally specific, Borges et al.
(2005) and Cai et al. (2006) estimate mid-latitude upwelling sys-
tems to be air–sea sinks of 0.3 and 2.7 mmol CO2 m�2 d�1, respec-
tively. Scaling our new areal average to the whole study region
(less the Sea of Cortez) gives a net annual air–sea CO2 uptake of
about 14 Tg C y�1, compared with the Chavez et al. net out-gassing
of 0.5 Tg C yr�1. Our new air–sea transfer estimate is comparable to
that estimated by Hales et al. (2005), but only fortuitously. Hales
et al. (2005) limited their extrapolation to a smaller cross-shelf ex-
tent (water depths <200 m) and a shorter seasonal duration, but
also extrapolated a significantly more negative mean air–sea
pCO2 difference. Uncertainty in this estimate is difficult to com-
pletely assess, and depends on short-term covariance of wind
fields and surface pCO2 distributions that we could never resolve
with this climatological estimate. If we assume that the large-scale
wind patterns and surface pCO2 distributions are adequately repre-
sented by this method, and that the smaller-scale variability is
uncorrelated, we can crudely estimate the uncertainty from the
areally-weighted RMS deviation between predicted and observed
pCO2 (�20 latm) and the areally-averaged air–sea pCO2 difference
(�-20 latm), we must place uncertainty on the air–sea transfer
estimation that is similar in magnitude to the best estimate (i.e.
± 14 Tg C y�1).
5. Discussion

The combination of SOM-defined regions and a mechanistic,
nonlinear predictive algorithm for pCO2 shows promise for supe-
rior spatial and temporal estimation of air–sea CO2 fluxes. How-
ever, the results thus far need to be evaluated in comparison
with previous large-scale syntheses, and issues related to the
broader applicability need to be elaborated upon. In the discussion,
we first investigate the difference between the flux estimate pre-
sented above and that resulting from the Chavez et al. (2007) anal-
ysis. Second, we attempt to understand the still-unsatisfying
predictive capability of chlorophyll. Third, we address the limita-
tion of the climatologically-defined SOM. Finally, we discuss limi-
tations on broader application of the approach.
5.1. Comparison to previous regional flux estimations

The net annual flux for the study area is a net annual sink for
atmospheric CO2 of much larger magnitude than the small source
based on the Chavez et al. (2007) synthesis. While uncertainties
are large in both estimates, the difference in best estimates
amounts to a regionally important air–sea transport difference,
and should be discussed. There are a number of reasons for the dif-
ference. First is the fact that this analysis was limited to the years
1997–2005, when satellite chlorophyll products were available,
and the ambient atmospheric pCO2 was higher than over much
of the time period of the Chavez et al. (2007) data synthesis, which
included observations as far back as the late 1970s. We used an
average atmospheric pCO2 of 375 latm in our flux calculations,
appropriate for the location of the study and the mid-point of that
time frame. The Chavez et al analysis used constructions of the air–
sea pCO2 difference (DpCO2) in their synthesis, and this suggests
that atmospheric increases in pCO2 were accounted for if the coast-
al waters were tracking the atmosphere, as is the case with many
open ocean regions (Takahashi et al., 2009). If the coastal oceans do
not, in fact, follow atmospheric CO2 increases, then this more re-
cent atmospheric CO2 value could account for a large part of the
estimated flux difference.

Second is the use of satellite scatterometer wind speed esti-
mates in place of NCEP reanalysis products. The former are more
spatially and temporally variable than the latter (Risien and Chel-
ton, 2008), and the use of the 2nd-order wind-speed dependence of
the gas exchange coefficient is expected to yield a greater mean gas
transfer rate. The wind product we used was the monthly average
of the square of the wind stress, so this potential enhancement of
the gas transfer would be retained. However, the more significant
factor is in the correlation or anti-correlation of the gas transfer
velocity with the air–sea pCO2 difference. If our analysis produces
regions with undersaturated surface waters coinciding with times
when winds are strong, the ocean sink strength will be correspond-
ingly amplified. Some hint of this is present in the waters of the Pa-
cific Northwest, which show strong undersaturation in nearshore
waters in early spring when winter storms have not yet subsided,
and in offshore waters, which retain undersaturated conditions
into the fall when winter winds increase. These regions show up
as strong sinks and play a role in setting the net annual flux for
the region.

Last is the algorithm itself. The new algorithm includes explicit
dependences on temperature and chlorophyll that were not in-
cluded in the bin-averaging and spatio-temporal interpolation ap-
proach of Chavez et al. (2007). These dependences give the
possibility of hydrographically-driven variability in the surface
pCO2 distributions that is certain to be different than that in the
Chavez et al. (2007) analysis. The reasons for any systematic bias
are not clear, and are almost impossible to isolate given the multi-
tude of other differences between the two approaches.

5.2. Chlorophyll as a predictor for pCO2

Another key result is the ambiguous nature of the Chl depen-
dences in the algorithm. The empirical result is greatly improved
over the MLR approach, with twice as many regions requiring
Chl dependence in their final representation and 5 of these 6 hav-
ing coefficients that are at least within the same order as the
canonical TCO2 :Chl ratio of -7. The results are not as mechanistically
satisfying as hoped, however, with half of the regions still requiring
no significant Chl dependence. Some of this may be due to the fact
that the Chl data in the predictive algorithm is a remote-sensing
product that includes some spatial and temporal averaging not
incorporated in the in situ pCO2 measurements; however, we be-
lieve that there are important de-couplings in the TCO2 –chlorophyll
relationship that should be discussed.

There is some region-specific justification for these results: Re-
gions 2, 3, and 7, which require no Chl dependence, and Region 4,
which requires a surprisingly large-amplitude seasonal variation
around a mean value of zero, are in the southernmost part of the
study area and not in direct contact with the coast. These temper-
ate, low-biomass, low-productivity regions are likely to have
highly recycled phytoplankton production, in which only a small
fraction of their primary production actually results in net export.
The geochemical result of a this scenario would be a weak linkage
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between changes in chlorophyll abundance and changes in TCO2

and thus direct connection of pCO2 to Chl standing stock may be
expected to be unclear. This would be particularly acute if varia-
tions in the degree of recycling were decoupled from variations
in biomass.

Regions 1, 9, and 10 are likely to be strongly influenced by
upwelling and high net productivity, but still have no requirement
for Chl as a predictor. This observation is more difficult to explain,
but we can speculate that coastal diatom populations, which have
rapid population dynamics, often dominate upwelling systems.
These populations can draw large amounts of nitrate down to
background levels in a matter of a few days (Dugdale et al., 1990,
2006). Upon reaching nutrient exhaustion, blooms can terminate
with similar rapidity, either by aggregation (Prieto et al., 2002) or
by viral attack (Bratbak et al., 1990), resulting in massive export
events that leave little biomass in surface waters. The impact on
surface water chemistry, however can persist until other, physical
factors such as gas exchange can restore pre-bloom conditions. In
the case of CO2, gas exchange is a slow process, taking months to
re-equilibrate surface mixed layers, and so the CO2 depletion
resulting from productivity could be retained in surface waters
long after biomass had disappeared.

The conclusion must be that the model applied here is inade-
quate for capturing the complexity of the relationship between
CO2 and Chl-a as defined by MODIS. This is not necessarily a sur-
prise, despite our conceptual improvements over simple linear
dependences of pCO2 on chlorophyll standing stock, and we know
that there are a number of better hypothetical approaches. Others
have shown that chlorophyll is a poor predictor for pCO2, particu-
larly in coastal waters (e.g. Borges and Frankignoulle, 2001; Zhai
et al., 2009). One improved approach might be to discern the dom-
inant types of phytoplankton from ocean color remote sensing
data, such as the approach being carried out by d’Ovidio et al.
(2010) using algorithms like PHYSAT. Another might be to incorpo-
rate estimates of net productivity rather than standing stock and
some sort of historical evolution of the chlorophyll abundance
within a water mass along its trajectory. However these sugges-
tions require more sophisticated modeling and data assimilation
than currently exists in order to realize the true capability of remo-
tely-sensed chlorophyll as a predictor for CO2.

5.3. Climatologically-defined SOM regions

The objective of this exercise was not only to devise a means for
improved pCO2 prediction, but also to remove the non-mechanistic
proxy dependences on independent space and time variables. The
SOM approach, by objectively defining biogeochemical regions
within which hydrographic relationships were thought to be con-
sistent, was a key step in that process. This succeeded in that there
was essentially no need for spatial dependence within regions in
the final applied pCO2 predictions, as shown by the general lack
of sensitivity to latitude and longitude as independent variables.
It failed, however, in that all regions required empirical time
dependence in at least some of their coefficients. While it is easy
to explain how there ought to be seasonal dependence in the bio-
geochemical functioning of a region, that functioning ought to be
captured by the hydrographic dependences in the predictive
model.

We believe that some of this could be addressed by defining re-
gions that are based on seasonally- or monthly-resolved climatol-
ogies. We know that certain parts of these coastal waters are
strongly seasonally influenced. For example, the higher latitudes
of the study area shift seasonally from upwelling to downwelling
physical forcing, and it is unlikely that these waters are hydro-
graphically homogeneous over the course of the year. In such a
temporally-resolved SOM exercise, the boundaries of the regions
would not be geographically fixed, but might move north or south,
or shrink or expand over the course of the year. This is a compli-
cated next step, and is not as straightforward as simply defining
discrete sets of SOM regions for individual temporal intervals. Kav-
anaugh et al. (submitted for publication) have examined a tempo-
rally continuous approach to this problem, applied in the open
North Pacific. Applying this approach to these coastal waters is a
logical next step.
5.4. Application to CO2 flux predictions

Two factors limit extrapolation of these results over wider spa-
tial and temporal extents. The first is the obvious data limitation in
key regions. The intent of this exercise was to devise a means for
expanding sparse data coverage using a synthetic approach; how-
ever, sufficient data for algorithm training is still essential. In ex-
tremely data-poor regions like those at the northern and
southern extents of the North American continental margin, there
is still an insufficient observational basis for application of a meth-
od such as this. Conversely, the SOM analysis may help to ease the
overall observational burden, and to direct observational pro-
grams. Once SOM regions are identified for a given area, and the
dynamic ranges of the hydrographic factors within each region de-
fined, a sampling approach need only provide pCO2 data over a rea-
sonable portion of the hydrographic range to be sufficient for
algorithm training. This could be a substantial improvement over
attempting to exhaustively cover the space and time scales of
interest.

The second is that the analysis here was for a monthly-resolved
climatology, and as a result has no ability to account for long-term
temporal trends that might be unrelated to hydrographic relation-
ships. The pertinent example is of rising atmospheric CO2 levels,
the effects of which we were unable to identify in the surface-
water pCO2 observations. It is unlikely that the coastal surface
waters are not responding to the atmosphere at some level, as this
would imply that the sink would keep indefinitely increasing as
atmospheric levels continued to rise. It is likely that any trend fol-
lowing the �2 latm yr�1 increase in atmospheric CO2 is just so
small relative to the variability in the observations that it is ob-
scured. It may be possible to use an approach such as this to define
a reference pCO2 based on hydrographic relationships, which thus
accounts for the biogeochemical forcing. The deviations between
the reference pCO2 and the actual observations could then be used
to interpret the long-term temporal trends.
6. Conclusions

We have presented a method for predicting the pCO2 of surface
waters in a highly variable and diverse coastal region, the Pacific
coast of central North America. The method requires objective sub-
categorization of the study area into biogeochemically consistent
sub-regions, and a predictive model that allows nonlinear depen-
dence on input parameters. We accomplished the first by means
of a self-organizing map (SOM) that delineated 13 sub-regions in
the study area. We accomplished the second by simple parameter-
ization of surface water TCO2 and TAlk as a function of SST, Chl, and
time of year, from which pCO2 was calculated, thus explicitly
including the inherent non-linearity of the carbonate chemistry
system. The method was trained using a historical compilation of
surface-water pCO2 observations, and yielded predictions with
RMS deviations from the observations of less than 20 latm and
correlation coefficients of >0.81. Predictive power was improved
by at least a factor of 2.5, for the entire region, with important indi-
vidual sub-regions having their predictive power improved by over
an order of magnitude. The method was validated by comparison
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of predicted pCO2 with that observed on a recent cruise spanning
the study region. The predicted pCO2 distributions coupled with
a wind-speed climatology allowed calculation of a regional uptake
of 14 Tg C yr�1 of atmospheric CO2, in contrast to the weak release
of CO2 from the same waters predicted by a previous bin-averaging
and interpolation approach. Future application of the method de-
scribed here should focus on better incorporation of the mechanis-
tic linkages between chlorophyll standing stocks and TCO2 , better
mechanistic descriptions of the predicted alkalinity, and better
temporal resolution of the SOM analysis. The approach presented
here may have application to assessing long-term trends in set-
tings with highly variable pCO2, and may aid in efficient planning
of future observational efforts.
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Appendix A

If each term in Eq. (8) was simply a space-and time-invariant
constant (i.e. if parameters c1–c3 were all fixed at 0), then the mod-
el would reduce to:

TCO2 ¼ Aþ BTþ bChl ðA:1Þ

where

A ¼ T0
CO2
� BT0 ðA:2Þ

B ¼ cø ðA:3Þ

In this case, the four empirical parameters T0
CO2

, T0, c, and /
could be reduced to two. We chose to retain the form of Eq. (8),
however, because it maintains the conceptual TCO2 representation,
and because once independent time- and space-variability of the
parameters T0

CO2
, T0, c, and / are allowed, the terms then become

expanded mixed-polynomial products of equations with the form
of Eq. (9). For example,

cø ¼ ðcc
0 þ cc

1Dlat þ cc
2Dlonþ cc

3tÞðcø
0 þ cø

1Dlat þ cø
2Dlonþ cø

3tÞ
ðA:4Þ

where the superscripts refer to the term to which each coefficient ci

applies. The number of coefficients is thus no longer reduced signif-
icantly. The form of Eq. (8) with terms that vary spatially and tem-
porally as in Eq. (9) is a more intuitive representation of the model,
and we maintained that representation throughout the exercise.
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