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Comparative analyses of oceanic ecosystems require an objective framework to define coherent study
regions and scale the patterns and processes observed within them. We applied the hierarchical patch
mosaic paradigm of landscape ecology to the study of the seasonal variability of the North Pacific to
facilitate comparative analysis between pelagic ecosystems and provide spatiotemporal context for
Eulerian time-series studies. Using 13-year climatologies of sea surface temperature (SST), photosyn-
thetically active radiation (PAR), and chlorophyll a (chl-a), we classified seascapes in environmental
space that were monthly-resolved, dynamic and nested in space and time. To test the assumption that
seascapes represent coherent regions with unique biogeochemical function and to determine the
hierarchical scale that best characterized variance in biogeochemical parameters, independent data
sets were analyzed across seascapes using analysis of variance (ANOVA), nested-ANOVA and multiple
linear regression (MLR) analyses. We also compared the classification efficiency (as defined by the
ANOVA F-statistic) of resultant dynamic seascapes to a commonly-used static classification system.
Variance of nutrients and net primary productivity (NPP) were well characterized in the first two
levels of hierarchy of eight seascapes nested within three superseascapes (R2 = 0.5–0.7). Dynamic
boundaries at this level resulted in a nearly 2-fold increase in classification efficiency over static
boundaries. MLR analyses revealed differential forcing on pCO2 across seascapes and hierarchical levels
and a 33% reduction in mean model error with increased partitioning (from 18.5 latm to 12.0 latm
pCO2). Importantly, the empirical influence of seasonality was minor across seascapes at all hierarchi-
cal levels, suggesting that seascape partitioning minimizes the effect of non-hydrographic variables. As
part of the emerging field of pelagic seascape ecology, this effort provides an improved means of
monitoring and comparing oceanographic biophysical dynamics and an objective, quantitative basis
by which to scale data from local experiments and observations to regional and global biogeochemical
cycles.

� 2013 Published by Elsevier Ltd.
1. Introduction

1.1. The necessity of a formal pelagic seascape concept

The pelagic ocean is a complex system in which organism distri-
butions are affected by and provide feedbacks to physical and bio-
geochemical processes on multiple scales of spatial, temporal, and
biological organization (Lubchenco and Petes, 2010; Doney et al.,
2012). Non-linearities are common in biogeochemical (e.g. Gruber,
2011; Hales et al., 2012), biophysical (e.g. Hsieh et al., 2005) and
trophic (Litzow and Ciannelli, 2007, Brander, 2010) interactions.
Furthermore, spatial heterogeneity is ubiquitous and occurs at all
scales observed (Steele, 1991; Levin and Whitfield, 1994; Mitchell
et al., 2008). Understanding and modeling pelagic ecosystem
responses and feedbacks to environmental perturbation is there-
fore hampered by the lack of an objective framework to (1) scale
local processes to ocean basins (2) define how temporal and spatial
scaling of habitats may change regionally, and (3) place the
‘snapshots’ of data collected in a typical oceanographic research
expedition into a regional context.

To address issues of scale, change and context, terrestrial
ecologists have looked toward the field of landscape ecology

http://crossmark.crossref.org/dialog/?doi=10.1016/j.pocean.2013.10.013&domain=pdf
http://dx.doi.org/10.1016/j.pocean.2013.10.013
mailto:mkavanaugh@whoi.edu
http://dx.doi.org/10.1016/j.pocean.2013.10.013
http://www.sciencedirect.com/science/journal/00796611
http://www.elsevier.com/locate/pocean


Fig. 1. Mean annual meridional surface velocities of the North Pacific (1998–2010).
Current velocities are modeled from satellite altimetry (Ocean Surface Current
model, OSCAR; Bonjean F. and G.S.E. Lagerloef, 2002). Overlain are general locations
of major currents (white lines, italics), classic static province divisions (black lines;
Longhurst, 1997, 2008) and seasonal range of the transition zone chlorophyll front,
TZCF (grey dashed, Polovina and others, 2001). See text for further description of
natural features (Introduction 2.2) and comparisons between Longhurst provinces
(Methods 3.6) and dynamic seascapes (this study).
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(Turner et al., 2001; Turner, 2005). Terrestrial ecosystems are
parsed into landscapes, defined in space by the main complex
causal (Troll, 1950) or reciprocal (Turner, 2005) relationships be-
tween the environment and the distributional patterns of organ-
isms. Likewise, in the marine environment, physiological and
ecological responses are closely coupled to the scale of physical
forcing (Steele, 1989). Thus, the global ocean may be viewed as a
mosaic of distinct seascapes, composed of unique combinations
of physicochemical forcing and biological responses and/or
feedbacks.

The characterization of distinct ocean ecosystems based on
ocean color can be traced as far back as Somerville (1853); how-
ever, the most comprehensive approach combining geography,
ocean color, and biogeochemistry can arguably be attributed to
Longhurst (1998, 2007). The Longhurst classification used chloro-
phyll a (chl-a) from the Coastal Zone Color Scanner, ship-based
climatologies of nutrients, euphotic depth and several physical
variables describing water column stratification. Although the
classified provinces are static, rectilinear, and subjectively chosen,
the resultant framework has been instrumental in understanding
changes in fishery and zooplankton distributions (Beaugrand
et al., 2000) and optimizing biogeochemical models, particularly
satellite primary productivity algorithms (Siegel et al., 2001).
More recent efforts have used the maturing satellite data record
to classify regions of biophysical coherence for coastal (Saraceno
et al., 2006; Devred et al., 2007; Hales et al., 2012) and open
ocean regions (Oliver and Irwin, 2008). The majority of these ef-
forts have been temporally static (but see Devred et al., 2009; Ir-
win and Oliver, 2009) and at a single scale. Importantly, few have
verified their classifications with rigorous post hoc statistical
analyses using independent data sets at multiple scales (but see
Vichi et al., 2011).

We classified satellite-derived seascapes in a spatially and
temporally specific fashion and explicitly test the hypothesis that
coherent regions as identified with satellite data represent dis-
tinct regions of ecosystem functioning (Platt and Sathyendranath,
1999). We extend the methods presented by Saraceno et al.
(2006) and Hales et al. (2012) to resolve the intra-annual
evolution of seascapes in the open North Pacific based on a
13-year climatology of satellite observations. Furthermore, we
explicitly apply the concept of patch hierarchy (Kotliar and
Wiens, 1990; O’Neill et al., 1992; Wu and Loucks, 1995). Bor-
rowed from landscape ecology, the hierarchical patch mosaic
paradigm views the system as a nested and partially ordered
set, where system dynamics are defined by the composite of
interacting, but distinct patches within the system. In our anal-
ysis, individual seascapes comprise the patches which aggregate
(or split) to form superseascapes (subseascapes) at larger (finer)
spatiotemporal scales. This application allowed us to classify ba-
sin-scale and gyre scale dynamics with the same domain and
test hypotheses regarding resolution requirements for character-
izing variability of different biogeochemical processes. First, we
describe the general patterns of seasonal seascape variability
across hierarchical levels. Then, we test the assumption that sea-
scapes represent areas of distinct biogeochemical function by
evaluating differences between seascapes using independent
in situ distributions of nutrients, net primary productivity
(NPP) and the partial pressure of carbon dioxide (pCO2) in the
surface ocean. On a subset of these data, we compare the effi-
ciency of classification between seasonally dynamic seascapes
and a commonly utilized static framework (Longhurst, 1998,
2007). Finally, we demonstrate the utility of the dynamic sea-
scape framework in reducing model error and illuminating regio-
nal variability of biophysical forcing of important biogeochemical
processes and patterns.
2. Methods

2.1. Study area

The North Pacific includes the oligotrophic and subarctic gyres
that are separated by the broad North Pacific current, NPC
(Fig. 1). In the western basin, the strong Kuroshio (�3 km h�1)
and Oyashio currents generate sharp physical and biochemical gra-
dients. In the east, the NPC broadens and slows (�0.5 km h�1),
bifurcating off the coast of British Columbia coast to form the Alas-
ka and California Currents and contribute to the boundary circula-
tion of the subarctic and subtropical gyres. The subarctic–
subtropical transition zone from the Kuroshio extension into the
eastern subarctic gyre is the largest sink region for atmospheric
carbon dioxide in the North Pacific (Takahashi et al., 2009). Here,
while biological uptake of dissolved inorganic carbon (DIC) tends
to counteract the warming effect in the summer, the bulk of the
CO2 drawdown coincides with winter cooling and the resultant in-
crease in solubility of CO2 in seawater (Takahashi et al., 2002).

Superimposed on the physical boundaries described above, sea-
sonal and latitudinal changes in surface temperature (SST) and
photosynthetically active radiation (PAR) contribute to defining
the seascapes in which ecological assemblages develop and persist.
In this study, we have selected to restrict the domain to 120–
240�W, 15–65�N in order to highlight open ocean variability by
minimizing the influence of extreme values associated with ice-
edge responses in the northern latitudes and tropical instability
waves that pulse along the equator in the southern portion of
the North Pacific subtropical gyre (Evans et al., 2009).

2.2. Satellite data and processing

As a first step, we classified seascapes using remote sensing
data that was related to phytoplankton dynamics, namely chl-a,
PAR and SST. We used archived monthly averages and 8-day
composites of the latest processing of satellite data provided by
the Ocean Productivity Group (www.science.oregonstate.edu/
ocean.productivity), as used in their primary productivity algo-
rithms. These data have been cloud-filled which results in reduced
variability at seascape boundaries that would otherwise have been
associated with patchy cloud cover (Kavanaugh unpubl. data). We
downloaded Level 3, 18 km binned, 8-day composites and monthly
averages of SeaWiFS (R2010) chl-a, PAR, and Advanced Very High
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Radiometer sea surface temperature (AVHRR SST); the 18 km data
were subsequently binned into 1/4 degree pixels. The SeaWiFs
(SW) data record extends from 1998 to 2010 albeit with episodic
gaps during 2008–2010 due to sensor failure. Where missing, SW
chl-a and PAR were interpolated using the comparable MODIS
(R2012) product. Linear regression was conducted at each pixel
using the 8-day composite of each sensor for each month over
the years 2003–2010. Predicted SW chl-a did not vary more than
25% from actual SW chl-a (usually less than 10%) and predicted
PAR varied less than 10% from actual SW PAR. The predicted 8-
day composite was then used to fill gaps in the real SeaWiFs 8-
day composites; monthly averages were computed from the com-
bined product. Chl-a values >8 mg m�3 were masked to minimize
the effect of coastal variability and maximize variability in the
open ocean. The chl-a field was log10-transformed. All three fields
were normalized (to a scale of �1 to 1) prior to classification,
where the maximum value would be 1, minimum �1 and
median = 0.

2.3. Hierarchical classification of dynamic seascapes

Because of the strong, complex coupling of phytoplankton to
physical forcing at cellular (Jassby and Platt, 1976), local/commu-
nity (Steele and Henderson, 1992; Belgrano et al., 2004) and mes-
oscales, we chose a classifier that was robust to nonlinear
interactions, maintained underlying biophysical distributions,
and allowed seascapes to be defined objectively at multiple, nested
scales. In brief, we used a probabilistic self-organizing map
(PrSOM, Anouar et al., 1998) combined with a hierarchical agglom-
erative classification (HAC, Jain et al., 1987) to achieve a non-linear,
topology-preserving data reduction. SOMs have been used in
oceanography to classify regions (e.g. Richardson et al., 2003;
Saraceno et al., 2006), define regions of mechanistic coherence in
predictive pCO2 models (Hales et al., 2012), and to find drivers of
net primary productivity (Lachkar and Gruber, 2012). As with most
SOM methods, PrSOM uses a deformable neuronal net to maintain
data similarities and topological order between clusters. However,
the PrSOM introduces a probabilistic formalism: clusters are pro-
duced by approximating the probability density function with a
mixture of normal distributions and optimization based on a max-
imum likelihood function (Anouar et al., 1998).

The PrSOM algorithm and PrSOM-HAC combination algorithm
are described in detail in Anouar et al. (1998) and Saraceno et al.
(2006), respectively. We follow the method of Saraceno et al. with
two exceptions: (1) monthly climatological grids were vectorized
and concatenated to allow classification of space and time simulta-
neously, and (2) we chose multiple objective function thresholds
(below) to allow for multiple hierarchical levels to emerge. Briefly,
PrSOM reduces the spatiotemporal D-variable pixel vectors data
set sequentially onto a M � N neuron map. In our case, D = 3: SSTxyt,
PARxyt, chl-axyt, where x, y, t denote the particular geographic coor-
dinate and month of the pixel vector. Pixel vectors remain or move
amongst neurons in an iterative fashion that optimizes a fit to a D-
variate Gaussian distribution and maximum likelihood estimates
(MLE) for each variable are calculated. As in simulated annealing,
the trading distance expands and contracts (Anouar et al., 1998),
with a maximum distance in our case set to three (�20% of total
topological distance) and maximum iterations set to 1000. The
neural map size (M � N = 225) was chosen to maximize sensitivity
to mesoscale processes while preventing underpopulated nodes
(defined as less than 500 pixels). The map shape (M = N, square)
was chosen for its simple geometry to minimize topological edge
effects. The result after the final iteration were 225 weight vectors,
each weight a MLE of a particular variable for a given neuron.

The 225 weight vectors were reduced further by using a hierar-
chical agglomerative clustering (HAC) with Ward linkages (Ward,
1963). This linkage method uses combinatorial, Euclidian distances
that conserve the original data space with sequential linkages
(McCune et al., 2002). With each agglomeration and formation of
a new seascape cluster, distances are recalculated to determine
the distance of each vector to both its cluster centroid and the glo-
bal centroid, equivalent to within-group and total sum of squares
(GSS and TSS, respectively).

An objective function (I, information remaining; McCune et al.,
2002) was determined a priori to define the total number of
seascapes:

I ¼ ðTSS� GSSÞ=TSS ð1Þ

where TSS = GSS when all seascapes are fused into one. To define
seascapes at emergent scales by which we would evaluate the dif-
ferences in biogeochemistry, we examined stepwise agglomerations
of seascape classes (C), which resulted in local, rapid shifts in I. We
compared the shift in the objective function of our actual data (D) to
that which would occur under a random spatial structure (R) where
increased class size would add (1/C) information. We then deter-
mined whether the proportional shift was greater (aggregated) or
less (dispersed) than unity by defining an aggregation index (AI):

AI ¼ 1� ½ðICðDÞ � IC�1ðDÞÞ=ðICðRÞ � IC�1ðRÞÞ� ð2Þ
2.4. Internal validation of satellite-derived seascapes

2.4.1. Post-hoc statistical verification
To conduct parametric post hoc summaries, we accounted for

autocorrelation and anisotropy in our remote sensing dataset and
resampled at data densities that were statistically independent.
Autocorrelation, q, and number of pixel pairs, Np, at a given dis-
tance (d) and azimuth (a) were calculated with the original log10-
transformed chl-a data for each seascape as a function of 10 km
binned distance and 45-degree binned direction. A local correction
factor h(d,a)) for each distance-azimuth bin was calculated accord-
ing to Fortin and Dale (2005) where:

hðd;aÞ ¼ ð1� qðd;aÞÞ=ð1þ qðd;aÞÞ ð3Þ

A global correction factor, hG, was calculated for each seascape using
a weighted average of h(d,a) using the weights Np(d,a):

hG ¼
X4

a¼1

Xdmax

d¼10

½ha;dNpa;d�
X4

a¼1

Xdmax

d¼10

Npa;d

,
ð4Þ

where dmax was the lesser of 600 km or 0.6 � distance to seascape
edge. The global correction factor ranged from �0.15 to �0.4 (see
Table 1) and was applied to the total number of pixels in a sample,
N, to obtain the effective sample size, N0 for each seascape �month
interaction:

N0 ¼ hGN ð5Þ

Subsequently, N0 multivariate pixels were randomly selected for
statistical comparison to test whether provinces result in different
multivariate means. N0 was calculated for each month � seascape;
all three fields were randomly resampled at the N0 level. Because
data tended to be positively correlated at local and mesoscales
and anticorrelated at larger scales, this limit resulted in a smaller
effective sample size and therefore a more conservative estimate
of seascape differences.

2.4.2. Sensitivity
Classification algorithms that use different sensors, attributes,

assumptions of linearity, or dispersed organizational structure will
result in different division of state space and thus, the spatiotem-
poral location of seascapes and their boundaries. Here we focus
on how robust post hoc boundaries are to interannual changes in



Table 1
Summary Statistics of mean (standard error) satellite-derived SST, PAR, and chl-a within seascapes at three different hierarchical levels.% effective pixels depicts reduction in
sample size following month-wise spatial decorrelation analysis. R2 is proportion of variance explained by ANOVA of individual variables after decorrelation resampling (see
methods for details). Seascapes that share letters are not statistically distinct from one another (Tukey–Kramer Honest Square Distance multiple comparisons analysis) in that
variable.

% Effective pixel SST PAR Log10 (chl-a)

Level 1: 3 seascapes
Subtropics 0.18 24.3 (0.02) 46.4 (0.04) �1.21 (0.001)
Transition 0.27 17.6 (0.02) 37.1 (0.05) �0.71 (0.001)
Subarctic 0.47 8.3 (0.01) 25.0 (0.03) �0.36 (0.001)
R2 0.74 0.55 0.74

Level 2: 8 seascapes
Summer Subtropics, Su-ST 0.24 27.6 (0.02) 52.3 (0.04) �1.31 (0.001)
Winter Subtropics, W-ST 0.19 26.5 (0.02) 39.8 (0.04) �1.27 (0.001)
Oligotrophic Boundary, OB 0.38 21.6 (0.02) 46.2 (0.03) �1.13 (0.001)
Winter Transition, W-TR 0.28 22.3 (0.03) 26.8 (0.05) �0.99 (0.002)
Summer Transition, Su-TR 0.44 16.0 (0.02) 40.7 (0.03) �0.60 (0.001)
Mesotrophic Boundary, MB 0.15 12.8 (0.01) 25.5 (0.02) �0.42 (0.001)
Winter Subarctic, W-SA 0.31 5.67 (0.01) 14.1 (0.03) �0.40 (0.001)
Summer Subarctic, Su-SA 0.21 5.81 (0.01) 35.6 (0.03) �0.26 (0.001)
R2 0.89 0.86 0.80

Level 3: 14 Seascapes
1 0.35 27.6 (0.02) 52.3 (0.03) �1.31 (0.001)
2 0.43 26.5 (0.02) 39.8 (0.04) �1.27 (0.001)
3 0.38 23.7 (0.02) 50.0 (0.04) �1.16 (0.001)
4 0.19 20.3 (0.02) 44.1 (0.03) �1.12 (0.001)
5 0.12 23.1 (0.02) 27.7 (0.05) �1.06 (0.002)
6 0.15 19.4 (0.05) 23.6 (0.10) �0.76 (0.004) a
7 0.24 20.2 (0.03) 36.7 (0.06) �0.76 (0.002) a
8 0.05 14.8 (0.02) 17.1 (0.04) �0.56 (0.001)
9 0.25 14.5 (0.02) 42.0 (0.03) �0.55 (0.001)
10 0.15 3.43 (0.02) 13.8 (0.03) �0.49 (0.001)
11 0.21 8.01 (0.02) 14.4 (0.03) �0.31 (0.001)
12 0.40 12.1 (0.01) 28.3 (0.02) �0.37 (0.001) b
13 0.14 8.29 (0.02) 37.2 (0.03) �0.37(0.001) b
14 0.51 3.71(0.01) 34.2 (0.03) �0.17(0.001)
R2 0.94 0.90 0.83
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chl-a, via changes in community structure or unmeasured physical
forcing such as mixed layer depth or eddy kinetic energy. Sea-
scapes were classified as in Section 3.3 for each year, using the cli-
matological means for SST and PAR, and the individual years’
monthly means for chl-a. Area of pixels were calculated
(27.5 km � cosine (latitude) � 27.5 km for 1/4-degree resolution)
and total areal coverage summed for each seascape. Seasonal pat-
terns of expansion and contraction for individual years were com-
pared to the climatological pattern for each seascape. Interannual
shifts in boundaries associated with large-scale shifts in physical
forcing are the focus of a different manuscript.
2.5. External validation of satellite-derived seascapes

2.5.1. Evaluation of biogeochemical differences among seascapes
Differences in biogeochemical factors and processes among sea-

scapes and the relative importance of seascapes compared to space
and time were determined by evaluating archived nutrient concen-
trations, net primary productivity (NPP) and pCO2 data. Surface
concentrations of nitrate (NO�3 ), phosphate (PO3�

4 ) and silicate
(SiO2aq) were downloaded from open ocean stations (N > 12000)
archived in the World Ocean Database, WOD (v.2009; http://
www.nodc.noaa.gov); data were subsequently binned into the
nearest 1 � 1 degree pixel and monthly means were calculated (fi-
nal N = 3985). Climatological net primary productivity, NPP, was
determined using monthly climatologies (1998–2010) of the up-
dated carbon-based primary production model (Westberry et al.,
2008) made available by the Ocean Productivity group (http://
www.science.oregonstate.edu/ocean.productivity/). Monthly cli-
matological data of the partial pressure of CO2 in surface waters
(pCO2) were downloaded from the Lamont–Doherty Earth
Observatory database (http://cdiac.ornl.gov/oceans/), and evalu-
ated at the density reported by Takahashi et al. (2009).

2.5.2. Comparison to Longhurst provinces
The North Pacific is represented by nine Longhurst regions that

are seasonally static: Bering Sea (BERS), Subarctic East (PSAE), Sub-
arctic West (PSAW), Kuroshio (KURO), Polar Front (NPPF), Subtrop-
ical West (NPSW), Subtropical Gyre (NPSG), and the Alaska (ALSK)
and California Current Systems (CCAL) (Longhurst, 1998, 2006).
Polygons delineating these regions were downloaded (http://
www.vliz.be) and gridded to a 0.25-degree surface. The Alaska Cur-
rent province did not have sufficient data density within the unin-
terpolated WOD set; thus, comparisons to emergent seascapes
were made among the remaining eight provinces.

2.6. Statistical analysis

All statistics were performed using JMP v 8.2 (� SAS Institute,
Cary NC). Satellite-derived seascape, nutrient and pCO2 data were
grouped according to seascapes and month. Summary statistics
are reported for in situ data and for satellite data (post decorrela-
tion) from analysis of variance (ANOVA) with Tukey–Kramer
adjustments for multiple comparisons and different sample sizes.
Nested ANOVA (nANOVA) were conducted to determine the rela-
tive importance of different hierarchical levels, or seasonality and
space within a single hierarchical level on nutrients, nutrient ra-
tios, and pCO2. Rather than arbitrarily assign season bins across a
wide latitudinal extent, season was modeled by fitting a sine func-
tion to month of year (season = sine (month/4)), which resulted in
a simplified seasonal cycle approximating the patterns of solar
irradiance. Spatial variability was modeled as a function of the

http://www.nodc.noaa.gov
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interaction of latitude and longitude, with the longitude function
representing degrees from the dateline. These variables were in-
cluded as a metric to gauge the relative importance of continuous
variability within seascapes.

To assess the relative importance of different biophysical interac-
tions across seascapes, a multiple linear regression model was built
to determine the effect of SST, chl-a, salinity and season on pCO2

within seascapes. All regression coefficients were scaled by their dy-
namic ranges and centered on their means to produce a standard-
ized effect size. Individual effect sizes are thus unit-less and can be
interpreted the percent change in pCO2 that is associated with a per-
cent change in the driver after accounting for weighted effects of
other significant drivers. Effect sizes (±standard error) were com-
pared between parameters and across seascapes and scales.

We compared the dynamic, objectively defined seascapes de-
scribed above to the static, subjectively defined seascapes de-
scribed by Longhurst based on their relative efficiency in
partitioning variance of representative biogeochemical variables.
The choice of variables reflects an attempt to remain neutral for
intercomparison while using available synoptic data: chl-a was
used explicitly in both the PrSOM-HAC and Longhurst classifica-
tion, nutrients were explicit in Longhurst classification and vari-
ability in NPP may be considered implicit in both schemes.
Common summary statistics from post hoc ANOVA to verify classi-
fication schemes are the F-statistic, a ratio of between-class vari-
ance to within-class variance, and the R2, a measure of total
variance explained. Because the latter can be biased to total num-
ber of classes, we compared the F-statistic (F-stat) between classi-
fication schemes. To account for different spatial sampling, NPP
and chl-a were resampled at the location of the WOD nutrient
casts. Classification efficiencies within the year and across vari-
ables were compared using pair-wise t-tests.
3. Results

The PrSOM-HAC combination resulted in optimized clusters
that accounted for approximately 90% of variance in climatological
means of satellite-derived chl-a, SST, and PAR (Table 1). There were
three distinct local maxima in the objective function (Fig. 2a) from
which we derived three levels of nestedness (Fig. 2b). While
month-wise spatial decorrelation resulted in a reduction of �80%
of the data, seascapes were still significantly different for all vari-
ables considered and at all scales (p < 0.05 Tukey–Kramer HSD
test), with the exception of chl-a between two clusters at the finest
resolution (Table 1). In relative terms, increased resolution to eight
seascapes resulted in small, but significant, addition of variance ex-
plained for chl-a and SST, but a larger increase in variance of PAR
explained. Thus nesting eight seascapes within three supersea-
scapes resulted in the characterization of the seasonal cycle of
insolation, warming and biological response for the North Pacific
(Fig. 2c). Seascape mean states and the boundaries that define
them should be interpreted as the combination of advection and
local shifts in chl-a, SST, and PAR. Spatiotemporal patterns are de-
scribed in detail below.
3.1. Spatiotemporal hierarchical patterns

3.1.1. First-level dynamics
At the basin scale, three distinct seascapes were classified that

generally describe the known divisions between the subarctic,
transition and subtropical regions (Figs. 2b and 3). All three areas
are present year round, with the transition zone approximating
the division between the transition zone chlorophyll front (TZCF,
Polovina et al., 2001) and the subarctic front. The Kuroshio
extension was evident in February and the eastern north Pacific
bifurcation became evident in May. Most of the seasonal dynamics,
however, were limited to latitudinal variation in the location of the
transition zone.

3.1.2. Second-level dynamics
At the second level of hierarchy, eight total seascapes were clas-

sified (Figs. 2b and 4) that generally described basin scale season-
ality. Three seascapes each arose from the subtropics and subarctic
whereas two seascapes resulted from division of the transition
zone. Note that the number of seascapes found in each month
was different and that a given seascape usually occupied a shifted
geographical region as the time of year varied. Since the methodol-
ogy distributed the seascapes in space and time in order to mini-
mize the within-seascape variance of the variables considered, it
was possible to follow the same composite properties by following
a given seascape in time. Seascapes were nominally identified
based on dominant season, geographic region and/or trophic status
based on mean chl-a concentration, specifically: (1) Summer sub-
tropical (Su-ST); (2) Winter subtropical (W-ST); (3) Oligotrophic
boundary (OB); (4) Winter transition (W-TR); (5) Summer transi-
tion (Su-TR); (6) Mesotrophic boundary (MB); (7) Winter subarctic
(W-SA); (8) Summer subarctic (Su-SA).

In January, latitudinal variations in light separated the four win-
ter seascapes: W-SA, MB, W-TR, and W-ST, with only minimal
expression of Su-TR present in the extreme southeast part of the
study region (Fig. 4). February marked the expression of the Kuro-
shio extension with high chl-a in seascape W-TR and differentia-
tion of regions abutting the North Pacific current. Concurrently,
the OB seascape expanded eastward, bifurcating W-ST into north-
ern and southern components. In March, high chl-a water from the
Oyashio current and the Sea of Japan was entrained in the subarctic
front, illustrated by the cross-basin expansion of the Su-SA and MB
seascapes, while W-TR and W-ST disappeared. April marked the
onset of a spring transition with abrupt shifts in seascape identity:
The W-SA seascape, which persisted Jan–Mar, disappeared entirely
and was replaced by Su-SA. May, June, and July were similar to
April, distinguished primarily by the northeastward expansion of
Su-ST and the N–S broadening of MB north and south along the
North American continent. During this time, the interface between
the two boundary seascapes tended to follow the seasonal migra-
tion of the TZCF. During August, the Su-SA zone was replaced by
the MB seascape, while the Su-TR zone became constricted by
the expansion of MB from the north and the OB from the south.
September was similar to August, although the fall transition be-
gan then with the first hints of the W-ST encroaching from the
southwest and the W-SA in patches within the Alaska Gyre and
in the SW along the boundary of the Oyashio and Kuroshio. The fall
transition was most clearly expressed in October, with the Tr-SA
zone retreating from the open SA towards the continents, the first
break in the cross-basin expanse of MB since February, and the first
widespread appearance of the three winter zones.

The progression of seascapes found in our analysis gives a new
perspective on seasonality in the North Pacific. On a basin scale,
winter appears to consist of 3 months spanning November–Janu-
ary, and was defined by the full cross-basin expression of W-ST
and W-SA seascapes. Summer, defined by the cross-basin extent
of the Su-TR and OB zones, accompanied by the expansion of Su-
ST to the south and Su-SA persists for 5 months (April–August).
Fall, defined by the first absence of defined summer or boundary
zones, and first appearance of winter zones, was most clearly ex-
pressed in October, although hints of transition are evident in Sep-
tember at higher latitudes. The spring transition, defined by the
first cross-basin appearance of the boundary seascapes and the
first appearance of the Su-ST and Su-SA zones, was most clearly de-
fined in March, although changes from winter conditions were evi-
dent in February.
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Fig. 2. Hierarchical structure of North Pacific Seascapes as defined by classification of satellite-derived SST, PAR, and chl-a. A. Percent aggregation defines emergent
hierarchical levels marked by dashed lines in all subplots at N = 3, 8, and 14 Seascapes. B. Relative Euclidean distances of seascapes at three hierarchical levels. Color-coding
corresponds to Figs. 3 and 4 (3rd level not colored). C. Percent of variance of SST, PAR, and chl-a explained through analysis of variance of seascapes at different hierarchical
levels. Seascape identifiers and their abbreviations used in text and Table 1 are as follows: (1) Summer subtropical (Su-ST); (2) Winter subtropical (W-ST); (3) Oligotrophic
boundary (OB); (4) Winter Transition (W-Tr); (5) Summer Transition (Su-Tr); (6) Mesotrophic boundary (MB); (7) Winter in subarctic (W-SA); (8) Summer subarctic (Su-SA).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Fig. 3. Seasonal migration of seascapes in the North Pacific basin: Level 1. Eight seascapes were classified using a combination of a probabilistic self-organizing map and
hierarchical clustering algorithm (PrSOM and HAC, respectively). Color codes indicate unique classifications and reflect relative concentrations of chl-a with red denoting
higher concentrations and blue denoting lower concentrations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.).
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3.1.3. Third level dynamics
Fourteen seascapes emerged at the finest hierarchical level.

These seascapes were nominally identified by their relative [chl-
a] and were indexed SS1 to SS14 (Figs. 2b and 5). Increasing hier-
archical resolution from eight to fourteen seascapes did not affect
Fig. 5. Seasonal migration of seascapes in the North Pacific basin: Level 3. Fourteen sea
different seascapes ranked by their relative concentrations of chl-a. (For interpretation of
of this article.).
the boundaries of the two subtropical seascapes (Su- and W-
ST = SS1 and SS2 respectively), however, it split each of the remain-
ing six seascapes.

In general, the resultant seascapes represented increased spatial
variability in the subtropics and seasonal opposites at higher
scapes were classified using a combination of PrSOM and HAC; color codes reflect
the references to color in this figure legend, the reader is referred to the web version
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latitudes. The OB split into two distinct subseascapes, SS3 and SS4,
both present for all but 2 months of the OB duration (March–Sep-
tember vs. February–October). The W-TR split into two distinct
subseascapes (SS5 and SS6) marked primarily by latitudinal differ-
ences in temperature and light. The Su-TR split into two seascapes
(SS7 and SS9) that seasonally represented marginal ecosystems
(e.g. the California Current). From the sixth seascape (MB), distinc-
tions arose associated with the spring (SS8) and fall (SS12) transi-
tion in the subarctic with seascapes that identify the Kuroshio
extension in February and April and the California current in early
spring and late autumn. The seventh seascape (W-SA) split (SS10
and SS11) to include a higher chl-a region (SS11) apparent in the
subarctic in October that shrank to align with the boundary regions
in the winter. Finally, the division of the Su-SA seascapes allowed
for the slightly different spatiotemporal dynamics of the eastern
(SS 13) and western subarctic gyres (SS14).
3.2. Sensitivity

In general, the classification was robust to local shifts in chl-a as
(Fig. 6). For most seascapes and months, local shifts in [chl-a] re-
sulted in <5% change in seascape extent. The exception occurred
in the subtropical summer. Here shifts in chl-a were associated
with decreased classification rates to the Su-ST which manifested
in decreased summer expansion in the Su-ST and increased sum-
mer expansion in the OB relative to the climatology. This suggests
that classified boundary between these two systems is relatively
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diffuse. Nevertheless, the timing of expansion and contraction re-
mained as robust in the subtropics as in the transition and subarc-
tic seascapes.
3.3. In situ data evaluation

3.3.1. Biogeochemical patterns
Here we tested the hypothesis that seascapes represent a

framework for describing biogeochemical distributions. Indeed,
seascapes explain a significant portion of variance of nutrient con-
centrations. Because nesting was unbalanced (Su-ST and W-ST in
two hierarchical levels), absolute effects could not be translated
into percent of model explained. However, the relative effect of
nesting levels was determined by examining the F-statistics (Ta-
ble 2). In most cases, the greatest amount of variance was ex-
plained by the coarsest level of hierarchy, although nested levels
still explained significant variation (Table 2). The exception to
the dominance of Level 1 occurred with NPP, where Level 2 (char-
acterizing the seasonal cycle) resulted in the largest contribution of
variance explained in the fully nested model (Table 2: F-stat = 312)
and pCO2 where higher resolution resulted in better characteriza-
tion of variance (F-stat of Level 3 > Level 1 > Level 2). For salinity
and nutrients, nesting continuous temporal and spatial variability
within seascapes results in minimal increases of explanatory
power (Table 3) after accounting for differences among seascapes.
However, the effect of seasonality was strong for NPP, suggesting
that subseascape temporal shifts contribute significantly to total
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Table 2
Nested analysis of variance: effect of hierarchical seascape level on nutrients, NPP and pCO2. F-statistics for each explanatory variable are shown and are significant (p < 0.05). R2

denotes variance explained of fully nested model. Brackets denote the level of nesting with Level 3[Level 2, Level 1] describing variance explained by Level 3 seascapes after
accounting for their nesting within Level 2 which is nested in Level 1.

Salinity NO3 SiO2 PO4 NO3/SiO2 NO3/PO4 pCO2 NPP

Level 1 1303 1074 772 1768 145 448 20 90
Level 2 [Level 1] 153 66 102 164 39 19 11 312
Level 3 [Level 2, Level1] 64 34 40 124 56 17 29 74
R2 0.55 0.55 0.42 0.62 0.28 0.38 0.26 0.38
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variability (Table 3: seascape F-stat = 17.6; season F-stat = 79.1).
The role of space and time within seascapes was also somewhat
strong for pCO2, but contributed less than that of differences
among seascapes (Table 3: seascape F-stat = 15; season = 10;
space = 5).

Biogeochemical patterns tended to coincide with basin scale
variation in temperature and salinity, with the lowest nutrient
concentrations and in Su-ST and highest nutrient concentration
in the Su-SA. However, other variables did not follow this pattern.
Within the subtropics, nitrate was not different between seascapes
but PO4, and to a lesser degree SiO2, increased from Su-ST to OB
(Table 4 and Level 2 Tukey–Kramer HSD test: Su-ST < W-ST < OB,
p < 0.05). This led to low N: Si and N: P in the OB compared to other
subtropical seascapes and its northern neighbor (Table 4 and Level
2 Tukey–Kramer HSD test: OB < W-ST�Su-ST < W-TR, p < 0.05).
pCO2 also had a local minimum in the transition zone (Table 4
and Level 1 Tukey–Kramer HSD test: Transition < Subarctic < Sub-
tropics, p < 0.05). Finally, while rates of satellite-derived NPP were
highest in the Su-SA, (Table 4, mean NPP = 660 mg C m�2 d�1), NPP
was <10% lower in the Su-TR (mean NPP = 600 mg C m�2 d�1) and
significantly higher than in the remaining seascapes (Level 2 Tu-
key–Kramer HSD test, p < 0.05).

3.3.2. Dynamic seascape and Longhurst comparison
The F-statistics (Table 5) are a measure of the ratio of the aver-

age between-group variance to the variance within a group, and
thus a general means by which to compare the efficiency of vari-
ance partitioning of different classification schemes. We examined
the efficiency of the different classification schemes for capturing
the spatial variability throughout the year of: chl-a (included
explicitly in the PrSOM-HAC classification), surface PO4 (included
in explicitly in the Longhurst classes) and NPP (included in neither
but implied by both through choice of classifying parameters).
Within individual months and across the annual cycle, PrSOM-
HAC-based classification was more efficient at capturing variability
in chl-a. The differences between classification schemes were min-
imal in winter and maximal in early summer, with the efficiency of
PrSOM-HAC seascapes being more than 2.25 � greater than that of
Longhurst provinces for classifying chl-a variability over the an-
nual cycle. Within months, with the exception of February through
April, PrSOM-HAC derived seascapes explained more variability of
NPP than did the Longhurst provinces (Table 5); on average, the
efficiency of the PrSOM-HAC classification was 65% higher than
Table 3
Nested analysis of variance: relative role of among and within Level 2 seascape variability o
variable is shown. F-statistics are significant (p < 0.05) unless otherwise noted. R2 denote
seascapes.

Salinity NO3 SiO2

Level 2 168 174 74
Season[Level 2] 20 29 25
Space[Level 2] 18 5 15

Season � Space[Level2] 21 2.3 8
R2 0.59 0.58 0.46
of Longhurst (F-stat = 53.7 compared to F-stat = 32.0). For PO4

within months, PrSOM-HAC derived seascapes resulted in greater
between-group variability than Longhurst provinces for most
months considered, with increased classification efficiency of
>50% on average over the year. The PrSOM-HAC approach is there-
fore a better predictor of conditions even when examining param-
eters not explicitly included in PrSOM-HAC that were explicitly
included by Longhurst.
3.4. Biophysical forcing of pCO2

The biophysical forcing on pCO2 varied as a function of seascape
and hierarchical level (Table 6, Fig. 7). In preliminary analyses, chl-
a was found to be a stronger predictor of pCO2 than was NPP when
both were included in the model; the latter was therefore not in-
cluded in subsequent analyses. With the exception of one seascape
in the second level, seasonality was a relatively minor effect on
pCO2 across all hierarchical levels. Furthermore, substantial varia-
tion in North Pacific pCO2 was explained by constraining of the dy-
namic range of explanatory variables of the simple MLR model
within seascape spatiotemporal boundaries (Table 5). The multiple
linear regression analysis explained up to 88% and typically >60%
of the variability. Correlations (after accounting for sample density
within each seascape) averaged 0.68 for the coarsest level, 0.73 for
level 2 and 0.70 for level 3. Root mean square error of the multiple
linear regression model was also reduced with finer resolution.
Across seascapes, pixel weighted mean RMSE (±SE) decreased from
18.5 latm (basin) to 15.3 (±1.6) latm at Level 1 to 12.4 (±1.1) latm
at Level 2 to 12 (±0.8) ltam at Level 3.

In the subtropics, at the coarsest scale, pCO2 decreased as a
function of increased chl-a, cooling, and wintertime processes
not related to cooling. pCO2 also increased with decreased salinity
in this region. With increased resolution (Level 2), the negative
salinity effect appeared to be driven by dynamics in OB with posi-
tive associations of salinity in both Su-ST and W-ST. The OB was
unique also due to the strong contribution of chl-a to pCO2

drawdown.
Across the transition zone, chl-a had the strongest effect on

pCO2 (Table 5, Fig. 7). SST was not a significant factor in this region
when changes in salinity were included. The chl-a effect was sig-
nificantly greater than warming effect in this region for the first
two levels of hierarchy, however, the relative effects in the third
n nutrients, NPP, and pCO2. F-statistics (proportion contributed) for each explanatory
s variance explained of fully nested model. Brackets denote nesting within Level 2

PO4 NO3/SiO2 NO3/PO4 NPP pCO2

166 53 102 17.6 15
21 14 14 79.1 10
13 5 NS 4.9 5

1.8
10 13 2.1 7.7 9
0.61 0.26 0.39 0.43 0.27



Table 4
Mean concentrations and ratios (±SE) of nutrients, pCO2 and NPP in surface waters of Level 2 seascapes.

Seascape N NO3 (lM) SiO2 (lM) PO4 (lM) NO3/SiO2 NO3/PO4 pCO2 (latm) NPP (mg C m�2 d�1)

Su-ST 385 0.26 (0.02) 2.51 (0.13) 0.08 (0.01) 0.13 (0.01) 4.04 (0.29) 360 (2) 416 (3)
W-ST 187 0.37 (0.09) 3.75 (0.31) 0.14 (0.01) 0.13 (0.03) 3.35 (0.52) 351 (3) 413 (4)
OB 700 0.25 0.02) 3.3 (0.09) 0.18 (0.01) 0.1 (0.01) 2.4 (0.17) 356 (2) 408 (3)
W-TR 282 0.61 (0.06) 2.89 (0.13) 0.15 (0.01) 0.23 (0.02) 5.25 (0.33) 331 (4) 359 (10)
Su-TR 953 1.67 (0.08) 5.1 (0.13) 0.36 (0.01) 0.3 (0.01) 4.53 (0.16) 338 (3) 600 (10)
MB 726 4.67 (0.17) 8.84 (0.25) 0.61 (0.01) 0.47 (0.01) 6.65 (0.18) 341 (2) 517 (8)
W-SA 233 6.31 (0.33) 11.8 (0.55) 0.85 (0.02) 0.57 (0.02) 6.96 (0.25) 347 (3) 266 (13)
Su-SA 519 7.53 (0.21) 14.0 (0.34) 0.9 (0.02) 0.59 (0.02) 7.8 (0.17) 343 (2) 660 (12)

Table 5
Comparison of classification efficiency between PRSOM-HAC seascapes and Longhurst provinces within and across months. Shown are F-statistics resulting from analyses of
variance of surface [chl], NPP and a representative nutrient (PO4). All F-statistics are statistically significant (p < 0.05) unless otherwise marked (NS). Bold = largest F-statistic and
thus largest ratio of between group (explained) to within group (unexplained) variance. NPP and chl-a have been log10-transformed prior to analysis. Both weighted (W) and
simple (S) means F-statistics across months are reported. T-ratio and p-value reflect 1-sided t-test (PrSOM-HAC - Longhurst).

SeaWiFs [chl-a] NPP (CbPM) WOD- [Phosphate] (0–30 m)

MO N PRSOM-HAC Long-hurst N PRSOM-HAC Long-hurst N PRSOM-HAC Long-hurst

1 150 96.9 42.1 150 37.9 30.6 139 85.4 45.8
2 153 65.6 32.7 153 9.8 24.5 150 34.2 50.3
3 172 80.5 31.4 172 16.8 36.9 166 48.1 40.3
4 335 266 86.9 335 5.0 7.8 302 81.9 28.4
5 475 455 90.8 475 60.8 17.9 458 173 86.9
6 489 649 276 489 85.4 34.2 444 357 196
7 514 645 347 514 64.0 45.2 493 198 112
8 568 724 326 568 102 62.0 538 213 194
9 296 216 151 296 38.0 32.2 245 49.5 89.7
10 273 236 118 273 11.1 5.5 242 76.0 44.5
11 197 86.9 38.4 197 44.0 33.4 168 63.6 57.1
12 94 27.8 26.9 94 12.7 2.1 NS 92 35.7 16.1

Mean (W) 431 187 53.7 32 161 106
Mean (S) 296 131 40.6 27.7 117 80.1

t-ratio 3.79 2.02 2.45
p > t 0.002 0.04 0.02

Table 6
Variable forcing of pCO2 by salinity, SST, [chl a] and Season within seascapes at different hierarchical levels. Effect sizes (±SE) for each explanatory variable are shown (Methods:
Section 3.6). Effects are significant (p < 0.05) unless otherwise noted (NS = not significant). R2 denotes variance explained of full model. Pixels that were present in two or more
seascapes were excluded. [chl-a] values were log10-transformed prior to analysis.

N mean (pCO2) Salinity SST [chl a] Season R2

1st level Subtropics 749 353 (0.49) �17.8 (1.7) 4.8 (1.4) �7.6 (2.0) 10.1 (0.9) 0.26
Transition 219 336 (0.8) �32.6 (2.8) 2.7 (3.0) NS �40 (2.4) 8.3 (2.0) 0.62
Subarctic 703 346 129 (4.6) �43.8 (1.7) �24 (3.1) 2.4 (1.8) NS 0.67

2nd level Su-ST 244 358 (0.6) 9.9(2.1) 15(1.5) 4.6 (2.1) 3.8 (1.2) 0.34
W-ST 197 349 (0.7) 2.5 (2.5) NS 8.3(2.2) 5.2(2.5) 13 (8.7) 0.35
OB 308 353 (0.8) �33.9 (2.7) 11.3 (2.43) �23.5 (3.0) 10.9 (1.6) 0.41
W-TR 145 336 (0.9) �15.2 (2.8) �4.8 (2.6) �29 (1.9) 4.5 (1.5) 0.64
Su-TR 74 335 (1.54) �29.4 (5.0) 10.9 (5.7) �28.9 (3.0) 2.3 (5.0) NS 0.65
MB 181 333 (0.8) �18 (2.0) 3.4 (2.3) NS �29 (3.6) 13.1 (2.1) 0.54
W-SA 300 356 (0.9) 148 (7.0) �39.3 (1.7) �3.1 (3.5) NS2.5 (1.3) NS 0.78
Su-SA 222 342 (1.3) 125 (5.2) �28.0 (4.0) �22.5 (3.7) �8.5 (3.8) 0.78

3rd level SS1 244 358 (0.6) 9.9(2.1) 15(1.5) 4.6 (2.1) 3.8 (1.2) 0.34
SS2 197 349 (0.7) 2.5 (2.5) NS 8.3(2.2) 5.2(2.5) 13 (8.7) 0.35
SS3 107 352(1.35) �12.3(4.5) 10.7(3.5) �17.5 (5.2) 12.7 (2.8) 0.22
SS4 102 359 (1.1) �29 (3.3) 27 (3.3) 7.9 (3.2) 16.5 (2.3) 0.65
SS5 41 338 (1.4) 4.0(3.6) NS 2.5 (4.3) NS �11.4 (4.0) 6.4 (2.6) 0.44
SS6 23 340 (1.4) �10.6 (2.8) 8.8 (3.9) �26.4 (2.5) 3.0 (2.5) NS 0.88
SS7 9 343 (2.1) �4.4 (8) NS 163 (43) �180 (47) 84 (28) 0.84
SS8 67 328 (0.9) �14 (1.7) �2.5 (2.6) NS �15.2 (2.6) 9.0 (2.4) 0.68
SS9 36 336 (2.2) �23.2 (4.5) 8.1 (6.1) NS �16.2 (4.2) 3.4 (3.5) 0.56
SS10 114 377 (1.5) 18.2 (4.9) �28.8 (3.8) �1.3 (7.9) NS 1.9 (2.4) NS 0.51
SS11 67 341 (1.7) 77.9 (8.7) 0.1 (5.9) NS �13.7 (3.1) 5.1 (5.1) NS 0.73
SS12 96 336 (1.1) 135 (6.7) �17.8 (3.9) �4.4 (3.2) NS 2.9 (4.4) NS 0.84
SS13 107 337 (1) �16.6 (3.6) 3.9 (2.9) NS �25 (4.5) 6.0 (2.2) 0.38
SS14 108 349 (1.8) 134 (7.6) �34.2(5.8) NS �18 (5.1) �17 (5.3) 0.82
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level could not be resolved in many regions due to decreased sam-
ple size.

In the subarctic, physical mixing appeared to be the dominant
factor in driving pCO2 in our model, with strong positive salinity ef-
fects, both in W-SA and Su-SA. While chl-a was a significant driver
of pCO2 in the subarctic in general, its effect was dwarfed by the
mixing signal of salinity and cooling signal of SST in all but the
MB seascape.
4. Discussion

Because of the challenges inherent to working in an advective
environment and with organisms that exhibit patchy distributions
on multiple scales, seascape ecology requires a sound framework
for analyzing spatiotemporal patterns in the structure of pelagic
assemblages and the biogeochemical function they provide (Karl
and Letelier, 2009). The utility of the seascape framework de-
scribed here is supported by three lines of evidence: (1) hierarchi-
cally organized seascapes generally follow known patterns of
circulation and characterize the seasonality of the North Pacific,
allowing for objective extrapolation of observations in space and
time; (2) seascapes represent unique spatiotemporal entities,
describing distinct surface nutrient and primary productivity re-
gimes; (3) seascapes represent distinct biophysical interactions
that are relevant to predicting important processes such as regio-
nal variability in the biophysical forcing of pCO2. Furthermore,
the framework that we present improves upon the static approach
of Longhurst and allows for objective scaling of phenomena in
space and time.
4.1. Hierarchical organization and scaling

The North Pacific has several seasonally distinct features that
exhibit a spatiotemporal hierarchy. Our seascape classification al-
lowed visualization of the onset of the Kuroshio extension, the
Oyashio bloom and entrainment into the subarctic frontal current,
and the seasonal and meridional changes in the transition region
between the oligotrophic subtropical and the productive subarctic
gyres (Figs. 2–4). The dynamics of these transition zones were
also apparent with higher order clustering, as were heightened
seasonality in the subarctic and transition regions (Figs. 3 and 4).
Importantly, our classification allowed for non-linear interaction
between attributes and allowed for hierarchical organization and
seasonal expansion of seascapes that were robust to local variabil-
ity of a single variable, e.g. chl-a.

As suggested by previous studies (Devred et al., 2007; Hales
et al., 2012), we clearly show that seasonally evolving boundaries
characterize the dynamics of marine systems better than static,
rectilinear boundaries. However, classification error or uncertainty
increases when the gradients are subtle and or the variability with-
in each seascape is high relative to the mean. In the subtropics,
where SST and PAR are co-linear and the chl-a signal is low and rel-
atively stable, the classification was sensitive to local changes in
chl-a in the subtropics, resulting in over-estimation of the mid-
summer Su-ST extent and underestimation of the OB extent. The
boundary uncertainty is also reflected in the similar chl-a values
for the climatological means of the Su-ST and the OB, which sug-
gests that shifts in PAR and SST, rather than ‘‘biology’’ may drive
this seascape division. However, in a given year, late summer ed-
dies that regularly occur along 30�N (Wilson et al., 2008) may drive
the ST-OB boundary further south, whereas the climatological sig-
nal may be dampened by spatial variability between years. In addi-
tion, chl-a seasonality in the Su-ST at Station ALOHA (Letelier et al.,
1993; Winn et al., 1995) and at the Su-ST: OB boundary region
(Siegel et al., 2013) is known to be dominated by mixed layer
dynamics and changes associated with photoacclimation rather
than shifts in phytoplankton abundance. Thus, there remains
uncertainty to the nature of the Su-ST division and how it is af-
fected by local variation in physical forcing, acclimation and shifts
in phytoplankton abundance and community structure. However,
despite the uncertainty, the different nutrient ratios and biophysi-
cal forcing of pCO2 suggest that the two seascapes function differ-
ently. Certainly, future efforts should take advantage of improved
synoptic mixed layer depth models and or satellite-derived salin-
ity. These efforts will likely reveal greater complexity in the sea-
scape mosaic, even at the seasonal scale, and should be validated
with biogeochemical and ecological data sets.

4.2. Distinct biogeochemical distributions

The seasonal cycle of nutrients, nutrient ratios, and NPP in the
North Pacific is described by the boundaries of satellite-derived
seascapes suggesting that seascapes demarcate natural bound-
aries in nutrient availability and or nutrient use. Differences be-
tween seascapes accounted for a large amount of variance in
both nutrient concentrations and nutrient ratios; seascape differ-
ences were also more important than both spatial and temporal
variation within seascapes. While nutrient concentrations across
seascapes followed patterns expected from satellite chl a data,
distinct minima in surface N:P and N:Si occurred within the oligo-
trophic boundary seascape. This region is well documented to
have persistent, albeit modest rates of N2-fixation overlain by
irregular summer-fall blooms of diazotrophs (Karl et al., 2012;
Wilson et al., 2008; White et al., 2007) with N2-fixation affecting
subsurface nutrient distributions from the TZCF into the subtrop-
ics (Deutsch et al., 2001). Accordingly, tracking the spatial and
temporal migration of the OB may be analogous to tracking the
optimal habitat in the surface ocean for specific diazotrophs that
would be selectively favored in low N: P or N: Si environments,
particularly diazotrophic symbionts in diatoms (Venrick, 1974;
Villareal, 1991). Certainly, iron deposition (Dutkiewicz et al.,
2012), irradiance, or nitrate loss through denitrification upstream
(Luo et al., in press) may play a role in biogeographic patterns of
diazotrophs, although the in situ verification of iron availability as
well as diazotroph abundance has been has been historically lim-
ited (but see Luo et al., 2012).
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Surface biogeochemical distributions appear to have a season-
ally evolving biogeographic signature, although circulation and
biological effects on these distributions could not be resolved.
Whether this dynamic, biogeochemical geography is associated
with shifts in phytoplankton distributions (e.g. Weber and Deu-
tsch, 2010) remains to be seen through careful experiments that
manipulate biogeochemical and ecological models. We did not
explicitly include phytoplankton assemblage information in our
study, nor have we yet addressed interannual variation in seascape
boundaries. Linking the seasonal and interannual dynamics of sea-
scapes and their shifting boundaries to shifts in phytoplankton
diversity and biogeochemical pattern remains a logical next step.

4.3. Unique biophysical interactions

One of the major goals of a dynamic seascape framework is to
illuminate regional patterns and drivers of biogeochemical pro-
cesses to improve understanding of underlying mechanisms and
better parameterize global models. Regional variability is evident
in the discrete comparison of PrSOM-HAC based and Longhurst-
based partitioning. PrSOM-HAC based partitioning was more effi-
cient in explaining seasonal and spatial variability of chl-a, PO4

and satellite-derived NPP than Longhurst-based provinces. We rec-
ognize that these response variables are inter-related (e.g. the sa-
tellite-derived carbon based NPP uses the nitricline depth to
establish C:chl-a ratios, Westberry et al., 2008); continued cross
comparison using available independent datasets particularly with
taxon- or rate- specific in situ or modeled measurements will be
ultimately necessary. Nevertheless, we show that PrSOM-HAC
based partitioning is more efficient at classifying seasonal biogeo-
chemical variability, even of data used to inform Longhurst classi-
fication- both explicitly (nutrient) and implicitly (NPP). This
general finding is supported by other observations (Hardman-
Mountford et al., 2008) or statistical comparisons (Vichi et al.,
2011): a single Longhurst province cannot account for the seasonal
environmental variability in many regions of the ocean. Further-
more, constructing models within PrSOM-HAC based seascapes
does not rely on a large seasonal parameterization (Hales et al.,
2012). Changes in model performance and parameterization across
seascapes can be interpreted as likely dependence on measured
hydrographic parameters, rather than some unknown seasonally
varying process. Dynamic objective seascapes may serve, therefore,
as a more accurate extent than static frameworks by which to
intercompare models and improve their parameterization.

Several investigators have recognized the challenges of predict-
ing pCO2 based on its highly variable dependence on different bio-
physical parameters in space and time. Park et al. (2010) used
empirical subannual relationships between climatological pCO2

and sea surface temperature, along with interannual changes in
SST and wind speed to predict changes in surface pCO2. Permitting
the subseasonal regressions to be fit on any three or more sequen-
tial months allowed for different phases and shapes of the annual
cycle and reduced the error for the pCO2: SST relationship for a gi-
ven coordinate. In the North Atlantic, using a similar domain size to
ours, Friedrich and Oschlies (2009) trained a SOM-based predictive
model with ARGO data by explicitly including latitude, longitude,
and time in the training set. Telszewski et al. (2009) predicted
pCO2 by associating pCO2 with a SOM-based classification of mixed
layer depth, SST, and chl-a. While this method did not rely on bio-
regionalization, the predictive capacity in space and time was lim-
ited by the location and timing of the training pCO2 data set. Hales
et al. (2012) found that regional prediction of pCO2 within static,
but objectively-classified coastal seascapes was markedly im-
proved by including time-dependence in a semi-mechanistic mod-
el. As suggested by Hales et al. (2012), the implicit inclusion of time
in the classification of state space allowed us to diminish the effect
of time in our simple predictive pCO2 models. While satellite-based
estimates may suffer from large gaps (Friedrich and Oschlies,
2009), we found that classification of coherent biophysical regions-
i.e. seascapes, using only a subset of the available satellite record,
resulted reduced hydrographical variability within a given sea-
scape and increased model prediction capacity. Furthermore, while
the classification inputs and statistical model inputs were similar,
they were, with the exception of chl-a, from independent sources.
Thus, seascapes may provide a means by which to test different
hypotheses regarding the relative importance of different biophys-
ical forcing and to conduct comparisons of oceanic ecosystem func-
tioning (Murawski et al., 2010).

Seascapes represented regions of distinct biophysical forcing of
pCO2. We were able to describe a transition zone divided into sev-
eral regions within which biological and physical factors interact
differently to modulate pCO2 and, potentially, air–sea CO2 flux.
Considering processes within these distinct seascapes may help
elucidate differential controls of the complex ecological phenom-
ena such as how the biological pump contributes to air–sea ex-
change. For example, abutting the transition zone to the south,
the oligotrophic boundary seascape may respond with diazotro-
phy-fueled blooms to draw down surface pCO2. In the northern-
most seascapes, the drawdown effects of pCO2 by both cooling
(via SST) and net community productivity (via chl-a) seemed to
be small relative to mixing. In the transition seascapes, where
spring–summer NPP was greater than any other seascape, the chlo-
rophyll effect on pCO2 was greater than the temperature effect,
whether coarsely or finely defined in the hierarchy. We note that
coefficients were similar across the MB, OB, and the two transition
seascapes, albeit with dampened seasonality effects and less pre-
dictive error in the transition seascapes. This similarity may be a
result of over partitioning but it is also likely that our simple pre-
dictive model underestimates spatial variability by omitting pro-
cesses such as mesoscale circulation and wind. While we
acknowledge that interannual variability may play a role in bound-
ary location along the transition zone (e.g. Bograd et al., 2004), the
seasonal climatological seascape boundaries demarcate distinct
nutrient ratios and NPP (this study).

Differences in environmental forcing across seascapes represent
ecosystem-level variation in the processes that drive pCO2. In par-
ticular, across the transition, summer production may not merely
keep pace with, but rather exceed, the effect of warming in the
summer (Takahashi et al., 2002, 2009). Some neural network-
based predictions have resulted in regional biases in the seasonal
cycle of pCO2 (Telszewski et al., 2009; Landschützer et al., 2013),
which may lead to inaccurate partitioning of drivers. However, in
our study, the seasonality of predicted pCO2 did not exhibit coher-
ent zonal or meridional biases nor was there apparent seasonality
within the Su-TRAN seascape. Furthermore, cruise-based studies in
the NE Pacific (Lockwood et al., 2012; Howard et al., 2010; Juranek
et al., 2012) support the our assertion that biological production
drives pCO2 patterns across the Su-TRAN seascape.
5. Conclusion

The seascape framework described here considers dynamics in
space and time simultaneously, including both advective and local
shifts in state space, extending the landscape concept which has
tended to focus on aggregates in space (O’Neill et al., 1992; Wu,
1999; but see Gillson, 2009). Dynamic, satellite-derived seascapes
describe variability in biogeochemical patterns, NPP and environ-
mental forcing of pCO2. Seascapes can serve as indicators of spatio-
temporal modifications in ecosystem structure and function (this
study; Platt and Sathyendranath, 2008) and objective extents by
which to extrapolate and/or compare in situ observations. We
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recognize that classification algorithms that use different sensors,
attributes, assumptions of linearity, or dispersed organizational
structure will result in different division of state space and thus,
the spatiotemporal location of seascapes and their boundaries.
However, we can learn much about the organization of the system
by systematic comparison of method, attribute inclusion, and
scale. In addition to the biogeochemical applications presented
here, imposing objectively defined boundaries may be a means
for applying the ecosystem concept to the open ocean (Cole,
2005; Kavanaugh et al., 2013). We are currently exploring the rel-
evance of satellite seascapes to describe microbial communities,
document boundary shifts associated with interannual forcing
such as ENSO (e.g. Irwin and Oliver, 2009) and characterize long
term seascape shifts apparent in marine ecosystem models,
extending univariate understanding (e.g. Polovina et al., 2011) to
a more multivariate ecosystem response. With increased techno-
logical capacity to sense both remotely and autonomously the
aquatic environment, we now have the capacity for synoptic obser-
vations and characterization of unique combinations of physico-
chemical forcing and biological responses and/or feedbacks at
several scales. Continued development of the seascape framework
will help identify the major drivers of spatiotemporal variability of
aquatic systems, and conversely, characterize the role that spatio-
temporal variability plays in pelagic ecosystem functioning.
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